
Personal Computer

MZ-SOO

OWNER’S MANUAL

Personal Computer

MNZSOO

Owner’s
Manual

(© SHARP CORPORATION

NOTICE

This manual has been written for the MZ-800 personal computers and the BASIC

interpreter (1Z-016) which is provided with the MZ-800.

(1) All system software for the MZ-800 computers is supported in software packs

(cassette tape, etc.) in file form. The contents of all system software and

the material presented in this manual are subject to change without prior

notice for the purpose of product improvement and other reasons, and care

should be taken to confirm that the file version number of the system soft-

ware used matches that specified in this manual.

(2) All system software for the Sharp MZ-800 personal computer has been de-

veloped by the Sharp corporation, and all rights to such software are reserved.

Reproduction of the system software or the contents of this book is pro-
hibited.

(3) This computer and the contents of this manual have been fully checked for

completeness and correctness prior to shipment; however, if you should en-

counter any problems during operation or have any questions which cannot

be resolved by reading this manual, please do not hesitate to contact your

Sharp dealer for assistance.

Not withstanding the foregoing, note that the Sharp Corporation and its

representatives will not assume responsibility for any losses or damages in-

curred as a result of operation or use of this equipment.

Preface

Congratulations on purchasing the MZ-800 computer. Your MZ-800 is a compact personal computer,

featuring 640 x 200 dot addressable graphics, 16-colour display, and a programmable sound genera-

tor (PSG) which can generate 3-tone chords over 6 octaves. One of the excellent features of the MZ-800

is that it contains hardware which makes it compatible with the MZ-700 series computer. This makes

it possible for you to use most of the existing programs for the SHARP MZ-700 series computers on

your MZ-800.

This manual is written both as a guide to the MZ-800 and a BASIC reference manual. The manual

is constructed as follows.

Chapter I describes how to unpack, handle, and setup your MZ-800, and what to do if a problem occurs.

Chapter 2 describes how to turn on the power, load the BASIC interpreter, and turn off the power.

Chapter 3 explains the BASIC interpreter. This chapter also shows you how to write a simple pro-

gram, edit it, save it on a cassette tape and load it back into memory.

Chapter 4 describes the functions of the keyboard keys. This chapter also describes how to operate

the data recorder and handle tapes.

Chapter 5 presents the background knowledge you need to be able to write programs.

Chapter 6 describes the BASIC commands and statements.

Chapter 7 describes the hardware configuration of the MZ-800 and I/O port control. It also describes

peripheral devices and how to connect them.

Chapter 8 explains the monitor program, which allows you to ‘bypass’? BASIC and directly access

the MZ-800’s memory.

Chapter 9 explains the MZ-700 mode of the MZ-800.

Make sure that you read the handling and setup instructions before turning on the computer’s power

switch. Read this manual thoroughly to get the most out of your MZ-800 computer.

CONTENTS

Chapter 1 Introduction

1.1 Unpacking .

1.2 Handling ...

1.3 Appearance

1.4 Setup

Chapter 2 Start Up

2.1 Power-on

2.3 Running the Demonstration Program

Chapter 3 Basic Operation

SA ntrod chon evvecsspaavicesanwarccsnesexrenascacusvaesavsannventawasteansawdaceanaaetiaevetcessacebecewediee

3.2 Getting to know the Keyboard

3.3 Writing a Simple Program

3.4 Editing Programs

3.5 Saving a Program...

3.6 Loading a Program.

Chapter 4 Keyboard and Data Recorder

4.1 Keyboard

Fe DAE RECOLOR ans svi covnnsscianssivasing cescunaneuvensavasensvanavinesivasny CaniceasuatacennasuskansnsavauTiy 4-6

Chapter 5 Programming Concepts

5.1 Multi-statement Lines and Line Numbers

5.2 Numeric Data and String Data

5.3 Constants...

5.4 Variables ...

5.5 Array Variables

5.6 Expressions

5.9 Screen Coordinates .

Chapter 6 MZ-800 BASIC Commands and Statements

G21 Commands sts evesanecesnnrsssunnseonnnuresaaaneanianatsswpunssenavestavtaasundacavenncnnceecsmedessaeven ts

6.2 Fundamental Statements ..

6.3 File Control Statements ...

6.4 Graphics Control Statements .

6.5 Music Control Statements ...

6.6 Printer Control Statements..

6.7 Machine Language Control Statements

6.8 Error Processing Statements

Chapter 7 Hardware

7.1 MZ-800 Hardware .,

7.1.1 System diagram

7.1.2 System switch settings.

7.1.3 I/O port control..

7.2 Peripheral Devices ..

7.2.1 Standard interfaces .

7.2.2 Expansion I/O connector .

7.2.3 RAM file board (MZ-1R18).
7.2.4 Joystick ..

7.2.5 Printers

7.2.6 Optional graphic memory MZ-1R25.

7.2.7 External cassette tape recorder (for MZ-811 only)

- 7-2

7-2

7-3

+ 7-4

- 7-8

7-8

- 7-8

- 7-10

- 7-11

. 7-13

. 7-16

. 7-18

Chapter 8 Monitor

S21) General sssciesesssievasesvnves aaa
8.2 ROM Monitor and BASIC Monito

8.3 Starting the ROM Monitor

8.4 Monitor Commands

8.5 BASIC Monitor
8.6 BASIC Monitor Commands

+ 8-2

. 8-3

. 8-5

- 8-9

Chapter 9 MZ-700 Mode

9.1 Using MZ-700 Programs

9.2 Summary of MZ-700 BASIC Commands and Statements,

Functions and Operations

Appendixes

Appendix A Display Control in the MZ-800 Mode

Programmable Sound Generator . . A-7

Reserved Words, scsssisossisrsesse

Restrictions on Using File 1/O Commands and Statements .A-13

Monitor Subroutines... - A-l4
Making Backup Copy of the BASIC Interpreter

Optional Colour Plotter-Printer MZ-1P16

Colour Plotter-Printer Control Codes
COdS TRADES, saves sxinsapsesvrnsnvnaxsncsceds

Error Messages Generated by the Monito!

Error Messages Generated by BASIC

ZEZrxcrro mma Specification ..

Chapter 1 Introduction

This chapter describes how to handle and set up the MZ-800 computer system. Read this chapter carefully

before turning on the power switch.

1.1 Unpacking

Remove the MZ-800 from the packing carton and check that you have the following items.

Cassette (containing the MZ-800
BASIC interpreter program,
a demonstration program for

the MZ-800 BASIC interpreter,
the MZ-700 BASIC interpreter,
and demonstration programs for
the MZ-700 BASIC interpreter)

ES;
Owner's manual (this manual)

Computer

> Definable key label

Store the carton and packing materials away in a safe place, so that you can reuse them if you have

to transport the computer in the future,

1-2

1.2 Handling

1) This computer uses many precision parts. Do not use or store it in extremely hot or cold condi-

tions, or under conditions where the temperature changes rapidly.

2) Do not use or store the computer in damp or dusty places, and avoid exposing it to corrosive chem-

icals or gases.

3) Do not block the ventilation holes or place large objects nearby that will disrupt ventilation.

4) Do not subject the computer to shock or vibration.

5) Do not expose the computer to direct sunlight.

6) Do not allow water or other liquid to enter the cabinet. Using the computer when it is wet is very

dangerous, and will damage the computer’s electronics.

7) Do not disassemble the cabinet unless you are installing options as instructed by documents from

SHARP.

8) Radios and TV sets may pick up interference from RF (radio frequency) noise generated by the

computer. Keep such equipment (other than that you may be using as the computer’s display unit)

well away from the computer.

9) When peripheral devices are connected, the display image may jitter. If this problem occurs, change

the layout of your system’s equipment.

10) Do not place any object other than the optional plotter/printer (MZ-1P16) on the cabinet.

11) After turning off the power switch, unplug the power cable by grasping the plug molding, not

the cable.
12) Make sure that you turn off the power switch when you not using the computer. After turning

off the power switch, wait at least 10 seconds before turning it on again, otherwise the system

may not operate properly.
13) Use a dry soft cloth to clean the unit. Do not use a wet cloth or volatile fluids such as alcohol

or benzene. Discolouration or deformation of the cabinet may result if this precaution is ignored.

14) If you notice any abnormal condition such as an extremely high temperature, an abnormal odour,

or smoke, stop what you are doing and quickly turn off the power then unplug the power cable.

MZ-811 and MZ-821

One of the models described in this manual may not be available in some countries.

This manual explains two personal computer models: the MZ-811 and the MZ-821. Differences

between these two computers are as follows.

Model name | MZ-811 MZ-821 |
Data recorder | Optional Standard

| Not connectable Ordinary cassette recorder | Connectable

When the optional MZ-1T04 data recorder is installed on the MZ-811, it becomes equivalent

to the MZ-821. Procedures for installing the data recorder are described in the MZ-1T04 in-

struction manual.

The explanations in this manual are based on the MZ-821.

However, the explanations on pages 7-3 and 7-18 apply only to the MZ-811.

1.3, Appearance
(Front view)

Data recorder

ay /

Cursor control keys

Insert and delete keys

(Rear view)

Channel control

B/W-colour switch

Composite signal output jack

RGBI signal output connector

Expansion slot compartment cover

Reset switch

Power cable socket

Printer connector

Cassette tape recorder jacks

(These jacks are not used.)

‘System switch Power switch

Joystick connectors

RF signal output jack Volume control

Printer power jack
(Note: If this jack is short-circuited,
the memory contents will be lost.)

1-5

1.4 Setup

To operate your MZ-800 computer, you must first set up the system. To do this, you will need to con-

nect a display unit to see what the computer is doing. SHARP supplies several types of display units

for the MZ-800 computer, or you can use an ordinary home TV set providing it can receive the VHF

band. The minimum configuration your computer can operate with is shown below:

The following explanation shows the setup procedure for a typical system.

(1) Using a TV set

To use a TV set as the display unit, use the monitor cable provided with your MZ-800.

1) Disconnect all antenna cables from the TV set. (If they are left connected, RF interference generat-

ed by the computer will be radiated from your TV antenna, which may interfere with neighboring
TV sets.)

2) Insert the monitor cable pin plug into the RF pin socket on the rear of the MZ-800. Connect the

other end of the cable to the 75-ohm UHF antenna terminal on your TV set.

750 UHF
antenna terminal

3) If the TV set is a colour unit, position the B/W-colour switch on the MZ-800 to COLOR, otherwise
position the switch to B/W.

4) Tune the channel selector on your TV set to a vacant channel between 33 and 39.

5) Turn on the TV set then turn on the MZ-800. As shown in the figure below, adjust the channel

control trimmer so that the following image is clearly displayed on the TV screen.

|
|RF

Make ready CMT

Please push key

C: Cassette tape

M: Monitor

Notes:

© The image quality on your TV set will not be as good as that obtained from a monitor supplied
by SHARP.

* Part of the image may not be displayed on some TV sets, and this is most likely due to how the
TV controls are set up. In such cases, consult your dealer,

* If the UHF antenna terminal does not use a pin jack, use a monitor cable with a pin plug at one

end and the correct connector for your TV set at the other end, The monitor cable impedance must

be 75 ohms, to match the impedance of the RF socket of your TV.

* No audio signal is output from the RF socket, therefore adjust the volume control of the TV set
to minimum.

(2) Using the MZ-1D19 colour display unit

1) Plug the square connector of the connection cable provided with the MZ-1D19 into the connector

on the rear panel of the display unit.

2) Plug the DIN connector of the connection cable into the RGB connector on the rear panel of the
MZ-800.

Note:

A colour TV set which has an RGB input terminal can also be connected to the RGB connector of

the MZ-800. Prepare the monitor cable as described in the instruction manual for the TV set.

(3) Using a green display unit (MZ-1D04)

Insert the pin plug of the green display unit cable into the composite signal output jack on the rear
panel of the MZ-800.

Position the B/W-colour switch to B/W.

Note:

A colour TV set with a video input terminal can be connected to the composite signal output jack
of the MZ-800. The monitor cable provided with the MZ-800 can be used for this connection.

1.5 In Case of Difficulty

If you have any problems with your MZ-800 either now or in the future, read this section first then
if necessary contact your dealer.

The following table lists possible problems and checks you can make.

Problem T Points to check
Image quality is poor. * Is the monitor cable connected correctly?

Is the selected TV channel the same as the channel control setting on the
MZ.-800? (See page 1-7.)

Is the B/W-colour switch selected correctly?

Nothing is displayed. * Is the power switch of the display switched ON?

© Is the display unit power cable plugged into an AC outlet? _|

The program will not stop. * To stop a BASIC program, press and hold the | SHIFT | key, then press the
| BREAK | key.
To stop a machine language program or the monitor program, press the

RESET switch on the rear panel. ms
The program cannot be loaded

from the cassette.
* Is loading method for the program correct? The loading method differs

for machine language programs and BASIC programs. Use the monitor
L command to load a machine language program and the LOAD state-
ment to load a BASIC program.

Other problems * Press the RESET switch on the rear panel to restart MZ-800) operation. |

1-10

Chapter 2 Start Up

2.1 Power-on

To start up your MZ-800 computer, first turn on the MZ-800, then turn on the display unit and any

other connected peripheral devices power switch.

Turn on the equipment in the following order.

1) The MZ-800 computer

2) The expansion unit (MZ-1U06)

3) Peripheral devices (such as the printer)

You will see the following message on the screen of the display unit.

Make ready CMT

Please push key

C: Cassette tape

M: Monitor

Remove any slack from the cassette tape (see page 4-7). Press the | EJECT | button on the MZ-800 data

recorder. Then insert the cassette with the side marked ‘‘BASIC 1Z-016” facing upwards.

Close the cassette compartment cover by hand. Press the [c] key on the main keyboard. (Pressing the

[M] key starts the monitor. See Chapter 8.) The screen display will change as follows:

[Make ready CMT

Press the |PLAY | button on the data recorder. The screen display will change as follows:

[IPL is looking for a program

2-2

The following message is then displayed.

| IPL is loading MZ-1Z016

Wait for several minutes, then the following display will appear on the screen. The tape stops auto-

matically, Press the STOP] button.

BASIC interpreter 12-016 VX.XX

Copyright (C) 1984 by SHARP CORP.

XXXXxX bytes free

Ready

.
L Cursor (blinking)

This display indicates that the BASIC interpreter has been loaded into memory and the MZ-800 is

ready to accept BASIC commands. This display is called the ‘‘initial’’ frame.

2.2 Power-off

When you switch the MZ-800 off, all programs and data stored in memory will be lost. Therefore,

execute a SAVE operation prior to powering the computer off. (Chapter 3 describes how to save data

onto the cassette tape.) To power off the MZ-800, finish any BASIC operations you may have started,

then check the screen to make sure ‘‘Ready”’ is displayed and the cursor is blinking. Switch OFF the

power switch.

Turn off the equipment in the following order.

1) Peripheral devices (such as the printer)

2) The expansion unit (MZ-1U06)

3) The MZ-800 computer

Note:

Do not power off the MZ-800 while the data recorder is operating (turning).

2-3

2.3. Running the Demonstration Program

The cassette provided with your MZ-800 contains a demonstration program, which can be executed

by typing in the following after loading BASIC and advancing the tape until the counter reads 170.

RUN “‘CMT:"' |CR

When the screen display below appears:

RUN ‘'CMT:”
+ PLAY

Press the | PLAY | button.

The demonstration program will now be executed. To stop the program, press the |SHIFT | and

BREAK | keys at the same time. Press the |STOP | button after the tape has stopped.

Note:

The tape will still move after the demonstration program has started.

© Accessory Tape

The accessory tape which is provided with the computer contains the following files.

Side A

SMZ-1ZOIG? ccccseevesesdcsdeve MZ-800 BASIC Interpreter (1Z-016)

“OPENING 800’’.... .. Demonstration program for MZ-800 BASIC

“OPENING DATA’ .. Data for demonstration program

Side A label

Side B

BASIE so siicsvicansvacsasvas MZ-700 BASIC Interpreter (1Z-013)

“OPENING”
“MUSIC” hase
“COLOR PLOTTER”

Side B label ‘ BASIC

| 1Z013 |

SHARP. us:

Demonstration programs for MZ-700 BASIC

2-4

Chapter 3 Basic Operation

3.1 Introduction

Your MZ-800 has been encoded with a set of instructions that allow it to perform a variety of opera-

tions, such as accepting a command entered by you from the keyboard. This set of instructions is called

the monitor program or simply the ‘‘monitor’’, and is stored in ROM (*). Any computer needs input

from a human being to know what operation to perform next. After you power on the MZ-800 the

monitor program makes the MZ-800 wait for you to input a command. Depending on the key you

press, the monitor allows you to perform one of the monitor commands, or reads a larger set of in-

structions from an external memory device, such as the data recorder, and places it in RAM (*).

*: ROM and RAM are memory devices which store information for the computer. The ROMs (Read

Only Memory) contain memory which can be read but cannot be changed or removed, even if the

power is turned off. The RAMs (Random Access Memory) however, contain memory which can

be both read and written. The MZ-800 uses ROM for storing the monitor program, and RAM for

temporarily storing the BASIC interpreter, BASIC programs and data, and other information. The

BASIC interpreter is explained in this chapter, while the monitor will be explained in detail in Chapter
8.

All the commands you input to your computer must be translated into the computer’s own language,

called machine language. Machine language consists of a collection of binary digits, which makes it

extremely difficult for most people to understand. Luckily however, you need not worry about learn-

ing to understand machine language, since the BASIC interpreter does this for you. BASIC is a “‘high-

level’’ language system which is similar to English and much easier for us as human beings to under-

stand than machine language. The BASIC interpreter reads instructions written by you in BASIC and

interprets them into the MZ-800’s machine language.

If you press the [ce] key when the initial frame is displayed, the monitor loads the BASIC interpreter

into RAM from the cassette, the BASIC interpreter then begins operating. (‘‘Load’’ means that infor-

mation is read from one memory device, e.g., the cassette, and is placed in another memory device,

e.g., the RAM.) Instructions written in BASIC are called commands or statements. The BASIC inter-

preter displays the following frame after the BASIC interpreter has been loaded.

BASIC interpreter 12-016 VX.XX

Copyright(C) 1984 by SHARP CORP.

XXXXXbytes free

Ready

.

(blinking)

This display indicates that you can use the computer interactively, i.e., when you type in a command,

the computer responds. If you type an incorrect command, the computer will answer with an error
message.

Each command evokes only one response from the computer, and multiple commands are difficult

to connect in a sequence. Because of this, you cannot get the computer to perform complicated opera-

tions in the interactive mode. The solution to enable the computer to perform complicated task, is

to write a program and store it in RAM. A program is a series of statements which are automatically

interpreted by the BASIC interpreter. A program which can be interpreted by the BASIC interpreter

is called a BASIC program.

3-2

3.2 Getting to Know the Keyboard

Follow the start-up procedure described in Section 2.1, your MZ-800 is ready to accept commands

typed in from the keyboard.

BASIC interpreter 12-016 VX.XX

Copyright(C) 1984 by SHARP CORP.

XXXXXbytes free

Ready

.

(blinking)

The blinking block-shaped marker you can see on the screen is called the cursor. When you press any

character key on the main keyboard, the cursor will move the right, with the typed character appearing

in the previous cursor position.

Press other character keys, and the characters will appear in the order in which you type them. The

cursor is always positioned to the immediate right of the character typed last, Next, press the key marked

“CR” located on the right side of the main keyboard. You will see the message ‘‘Syntax error’’ ap-

pears on the next line.

BASIC interpreter 1Z-016 VX.XX

Copyright(C) 1984 by SHARP CORP.

XXXXXbytes free

Ready

ASDFGJJ

Syntax error

Ready

.

The message ‘‘Syntax error’’ indicates that the computer cannot understand what you have just typed.

This is because the computer only recognizes commands from the BASIC programming language.

(Remember the BASIC interpreter?). BASIC will be explained more fully in Chapter 6, while ‘Syntax

error’’ and other error messages are listed in Appendix L. At the moment, this and the following exer-

cises don’t require you to know anything about BASIC. Now, type the following sentence from the

main keyboard.

PRINT ““ABC’’

After the closing quotation mark, press the |CR| key. The characters ‘‘ABC”’ will appear below the

sentence you just typed. The computer displays these characters in reply to the BASIC command you

entered, The command was the word ‘‘PRINT”’, which instructs the computer to redisplay the charac-
ters typed between the quotation marks.

Words in the BASIC language vocabulary which instruct the computer to perform an operation (such

as PRINT) are called commands or statements.

3.3. Writing a Simple Program

Start up the BASIC interpreter following the procedures described in Section 2.1.

BASIC interpreter 1Z-016 VX.XX

Copyright(C) 1984 by SHARP CORP.

XXXXXbytes free

Ready

.

(blinking)

Type the following characters.

10 CLS

Press the [CR] key. CLS is a statement which erases all the characters from the screen. However, the
computer does not act on the statement immediately as in the interactive mode. This is because we

are now writing a program, which causes the BASIC interpreter to store the statement in memory rather

than execute it immediately. After you input the statement, the cursor blinks at the beginning of the

line below ‘10 CLS” as shown below:

10 CLS
a

When a number precedes a statement, the BASIC interpreter stores the statement in memory. The number

preceding the statement is called the line number, and when many statements are stored in memory,

the line numbers indicate the order in which the statements are interpreted and performed by the com-

puter. Type the following characters then press the key.

RUN

All characters will disappear from the screen, RUN is a command which orders the BASIC interpreter

to interpret into machine language instructions all the statements stored in memory. The statements

are interpreted in ascending order of the line numbers and given to the computer. The CLS statement

is still in memory. You check this by typing the following:

LIST {cR)

CR) indicates the |CR | key has to be pressed. The following display appears:

3-4

Type in the following.

20 PRINT ‘‘SAMPLE PROGRAM” |CR|
30 PRINT “MZ-800" [CR |
40 END (CR.

You already know that in this program the PRINT statement will redisplay the characters between

quotation marks in lines 20 and 30. The END statement informs the BASIC interpreter of the end

of program. Type in RUN and press the |CR | key, the screen will then reappear as shown below.

Note:

From now on, you will frequently see the phrase ‘‘Enter a command or statement”’ (e.g., ‘‘Enter the

RUN command”’). This actually means ‘‘Type in a command or statement, and press the | CR | key’’.

You should remember this.

SAMPLE PROGRAM
MZ-800
Ready

a

Enter the LIST command to display the whole program.

=

SAMPLE PROGRAM
MZ-800
Ready

LIST
10 CLS

20 PRINT ‘‘SAMPLE PROGRAM”
30 PRINT ‘’MZ-800"
40 END
Ready
s

Enter the following command.

NEW |cR|

Then clear the screen by entering the CLS statement.

CLs [cr]

Now enter the LIST command.

LIST [CR]

3-5

The program can no longer be listed, since the NEW command erased the program from memory.

Entering the NEW command allows you to now write a new program in memory. Enter the following
program.

10 INPUT “A=";A
20 INPUT “B=";B

30 C=A+B
40 PRINT “A+B=";C
50 END

This program will calculate the sum of the two values A and B input from the keyboard. Two new

statements are used in this program. These are the INPUT statement and the LET statement (LET

is represented by the equal ‘‘="’ symbol on line 30).

The INPUT statement on line 10 reads whatever number (don’t type characters) you type in from the

keyboard and assigns it as the value of A. The INPUT statement on line 20 reads a second number

typed in from the keyboard and assigns it as the value of B. The LET statement on line 30 calculates

the sum of values A and B and assigns the result as the value of C. At the moment in our program,

the letters A, B, and C each represent a numeric value, When letters of the alphabet are assigned values

like this, they are called ‘‘variables”’. Enter the RUN command after typing in the above program.

The screen will change as follows:

10 INPUT “A=";A

20 INPUT “B="";B
30 C=A+B
40 PRINT “A+B=";C

50 END

RUN |CR
A=

Type in any number and press the [CR | key. The message ‘‘B=”" will be displayed following the above.

A=35 cr)
B=

Type in another number and press the |CR| key. The sum of A and B will now be displayed as fol-
lows.

A=35
B=23|cR|
A+B= 58

The program shown here is very simple. If you like, you can write your own programs by combining

some of the commands and statements which are explained in Chapter 6.

You may be confused by the words ‘‘statement’’ and ‘‘command’’. Both commands and statements

control operation of the computer. The distinction between commands and statements is thatcommands

are generally entered without line numbers and are executed immediately after they are entered. State-

ments however, are included in a program and are only executed when the program is started by the
RUN command.

In practice, most commands and statements can be used both with or without line numbers, so the

distinction between them is more traditional than qualitative.

3-6

3.4 Editing Programs

The BASIC interpreter makes it possible for you to edit a program which is in memory. Therefore,

if you type in any incorrect character during programming, you can correct it easily.

You can edit any portion of a program when that part of the program is displayed on the screen. The

program can be displayed by the LIST command. The cursor can be moved in any direction by the

cursor control keys (marked with arrows) you can change or delete the character in the same location

as the cursor, or insert characters before the character in the same location as the cursor.

The keys which allow you to edit programs are as follows.

: Moves the cursor one character position right.

Moves the cursor one character position left.

t Moves the cursor one line up.

+__| : Moves the cursor one line down.

INST | : Moves the character on which the cursor is located and all characters following it on the same

line to the right by one character position, and inserts a space at the cursor position. This

makes it possible to insert any character at the cursor position. To insert more than one charac-

ter, press the |INST | key the required number of times.

If the end of a program line reaches the right end of the display while inserting blanks with

the [INST] key, you cannot insert any more blanks. In this case, press the [CR] key and
execute the LIST command. The new program listing will include a row of blanks following

the line, allowing you to insert more blanks.

DEL | : Deletes the character at the location to the left of the cursor position and moves all characters

following it on the same line to the left by one character position.

(CLR)

lears the screen. (‘*|SHIFT| + |INST|’’ is another way of saying ‘‘press and hold the

key, then press the | INST key’’.)

SHIFT (HOME)
: Moves the cursor to the upper left corner of the screen.

Type in again the program shown in Section 3.3, but with the following intentional mistakes:

10 CLS
20 PRINT “‘SIMPLE PROGRAM"

30 PINTT ‘‘MZ-800"

40 END

To edit and correct the above program, the program must be listed on the screen. To do this, execute

the LIST command.

(1) Replacing a letter

SIMPLE on line 20 should read SAMPLE. Move the cursor to the position of character I by using

the cursor control keys, then press the |A| key. After changing I to A, press the key, and the

cursor will be returned to the beginning of line 30.

(2) Inserting a letter
Move the cursor to I in PINTT and press the | INST | key. Press the [R] key to insert R between the

characters P and I.

(3) Deleting a letter
Move the cursor to the second T in PRINTT and press the [DEL] key to delete it.
Press the |CR| key, and the cursor will move to the beginning of line 40.

3-7

(4) Adding a line

A new line can be added to any portion of the program. For instance, if we want to insert a line be-

tween line 10 and line 20, move the cursor to the beginning of the new line below line 40. Type ‘15

REM Editing sample |CR|’’.

10 CLS
20 PRINT ‘‘SAMPLE PROGRAM”

30 PRINT ‘‘MZ-800”
40 END

15 REM Editing sample

You may have noticed that until we added line 15, all the line numbers have been in increments of

10. There is no real technical reason for doing this other than the fact that increments of 10 leave space

for extra lines to be inserted if you want to change the program later on, and increments of 10 are

easy to remember. With this in mind, line number 15 could have just as easily been any other number

between 11 and 19 inclusive, but ‘‘15’’ is convenient since it still allows even further lines to be added
if later program changes are made.

Enter the CLS command, then enter the LIST command to confirm that the new line is now inserted
between lines 10 and 20.

LIST

10 CLS

15 REM Editing sample

20 PRINT ‘‘SAMPLE PROGRAM”

30 PRINT ‘’MZ-800"
40 END

(5) Deleting lines

Any program line can be deleted by using the DELETE command. To delete lines 15 and 20, type:

DELETE 15-20[CR]

Enter the LIST command. The program listing should appear as follows:

10 CLS

30 PRINT ‘‘MZ-800’"
40 END

Typing a line number and pressing the key also deletes the line.

(6) Renumbering

Enter the RENUM command to return all the line numbers to increments of 10. (RENUM can also
be specified to increment the line numbers by any other value.)

RENUM
LIST
10 CLS
20 PRINT ‘‘MZ-800""
30 END

(7) AUTO command

The AUTO command is a convenient feature which allows the computer to automatically generate

line numbers for you, in increments of 10 or the specified value. For details, see Chapter 6.

Remember to press the |CR| key after you finish editing each line; otherwise the editing changes

for that line will not be entered into memory, Secondly, make sure that you move the cursor to the

line below the last line of the program before typing RUN.

3-9

3.5 Saving a Program

When you turn the power switch off, any programs you may have typed will be lost. To reuse a pro-
gram in a later session, you must save it onto any external storage device such as a cassette. The proce-
dure for saving a program onto a cassette is described below.

* Using a new cassette:

1) Open the cassette compartment cover on the MZ-800 and insert the cassette, Close the cover, then
Press the counter reset button to reset the counter to ‘‘000"’.

Counter reset button

2) Type the following.

SAVE “CMT:TEST”’ [CR

This command instructs the computer to save the program in memory onto the cassette in the data
recorder (the data recorder is indicated in the SAVE statement by CMT:). The program is saved
with the name ‘‘TEST”’.

3) The next message to be displayed is “‘ # RECORD.PLAY”’. When you see this message, press the
RECORD | button.

4) When the message ‘Ready’’ appears on the screen and the tape stops, press the | STOP | button. Write
down the program name ‘*TEST”’ and the counter value at the end of the program on the cassette
label.

* Using a cassette which contains programs:

When using a cassette which already contains programs, the counter value for the end of the program
preceding the program you want to save must be known; otherwise your new program may become
lost somewhere on the tape.

1) Insert the cassette into the data recorder and rewind the tape by pressing the |REWIND] button.

2) Press the counter reset button to reset the counter to 000",

3-10

3) Press the | FFWD | button. Stop the tape by pressing the |STOP | button when the counter value for

the end of the preceding program nears.

4) Press the | PLAY | button to begin saving the program onto the cassette.

5) Perform steps 2 to 4 of the procedures described above for a new cassette.

6) When the program has been saved, note down the counter value, then run the tape an extra 2 or

3 counter revolutions and press the | STOP | button, When saving programs onto a cassette with exist-

ing programs, there is a possibility that the existing programs may be destroyed when the above

procedures are performed. Therefore, it is recommended that you use a new cassette to save a program.

3-11

3.6 Loading a Program

The cassette provided with your computer contains a demonstration program, and you can also pur-

chase commercially available programs. To use these programs, plus ones you may have written, you

must load them off the cassette and into the computer’s memory. The procedure for loading program

is described below.

1) Insert the cassette which contains the program into the data recorder. Rewind the tape to the coun-

ter value of the program preceding the program you want if necessary.

2) Enter the following command to load the program into memory.

LOAD “‘CMT:<name of program>’’

For example, to load the program ‘‘TEST”’,

LOAD ‘‘CMT:TEST”’

3) When the message ‘‘ PLAY” appears, press the |PLAY | button on the data recorder.

4) Press the P | button when the tape stops.

5) To execute the program ‘‘TEST’’ now that it has been loaded, enter the RUN command when the

message ‘‘Ready”’ is displayed on the screen.

Ready

RUN |CR

3-12

Chapter 4 Keyboard and Data

Recorder

4.1 Keyboard

4.1.1 Keyboard modes

The MZ-800 keyboard operates in one of the following modes:

* Normal mode: Normally used to input the alphabetic characters, numbers and symbols. This mode

is automatically set when the BASIC interpreter is started or the MZ-800 is reset.

* Shift lock mode: In this mode, all keys excepting through | FS | operate in the SHIFT mode. This

mode is entered when [SHIFT] + is pressed, Pressing
ALPHA | again resets the shift lock mode.

* Graphics mode: Used to input special graphic characters.

Three types of cursor are used to indicate the current keyboard mode.

Wi: Normal mode cursor

@ : Shift lock mode cursor

_. : Graphics mode cursor

4.1.2 Keys

The keyboard has many keys and their functions are as follows:

CYR yy

(1) Character keys
These keys are used to input letters, numerals and graphic characters.

Some character keys are marked with two different characters. These characters are input when the key

is pressed in each of the input modes described above.

Normal mode character ——
[3]: “3”

SHIFT | + [3]: “#”

Graphics mode characters

(3]:(
[SHIFT | + [3]: fg

In the normal mode: when a character key is pressed, either the uppercase type for the letter marked

on the keytop or the lower character on the keytop is input. When the character key is pressed together

with the | SHIFT | key, either the lowercase type for the letter marked on the keytop or the upper character

on the keytop is input.

In the graphics mode: each character key can be used to input either of two different graphic charac-

ters. When a character key is pressed by itself, the graphic character which is input is that shown on

the left side of the corresponding keytop in the figure below. When it is pressed together with the [SHIFT

key, the graphic character which is input is that shown on the right side of the keytop in the figure.

Pressing [1],[—],[=], , [CLR | or [HOME] in this mode inpus fi. Z..8.G@o.

These graphic symbols are not printed on the keys. However, adhesive labels on which graphic sym-

bols are printed are included with the MZ-800. You may find it convenient to stick the labels to the

front of each key, as shown in the two figures.

(2) Special keys

These keys are used to control the computer and set the input mode for the character keys. The special

keys are shaded in the figure below.

y
jittbtey

The functions of the special keys are as follows.

CR : This key is used to enter the line containing the cursor into the computer. Although characters

typed by the character keys are displayed on the screen, the computer ignores them until the

SHIFT | : This key operates keys in the shift mode while it is being held down.

GRAPH] : Pressing this key switches the keyboard to the graphics mode.

ALPHA| : Pressing this key returns the keyboard to the normal mode.

BREAK : This key is used to input an ESC code.

BREAK SHIFT) + | "Esc

: These keys are used to stop a program during execution or to stop cassette operation.

TAB_|: Advances the cursor to the next tab stop position on the display screen.

CTRL | : Pressing a character key while this key is being held down will enter a control code. For

details of the control codes, see Appendix D.

(3) Editing keys

The editing keys are used for making additions, changes, or deletions in programs. These are keys

located on the right-hand side of the computer. See Section 3.4 for the function of each key.

(4) Definable keys

UC JC UC JC JC =
[Cate is te ts) |

Immediately after the BASIC interpreter has started operating, the following functions are assigned

to the definable keys. You can change the functions of these keys by using DEFKEY statement. See

Chatper 6,

Fi]: “RUN GU" + CHRS$ (13)

F2]: “UISTU"
[F3]: “AUTO.”
[F4 |: “RENUM..”
[FS]: “COLOR.”

FT] : “CHRS(”
F2 | : DEF.KEY(”

[Fa] : “CONT”
F4]: “SAVE...”
F5]: “LOAD...”

a) =x fal 4

+++ 4+ +

om 3

Note:

CHRS (13) is the code for the key and ‘_.”’ represents a space.

* Installing definable key labels

You may find it convenient to insert the labels provided for the definable keys on which you write

the assigned characters into the label holders located above the definable keys.

The labels can be inserted into this holder by pulling open the transparent label cover.

(5) Auto repeat function
The auto repeat function causes input from the last key pressed to be repeated if that key is held down

longer than a certain period. The keys for which the auto repeat function is effective are those shaded

in the figure below.

Y Fe oie
Zz HE ae

T crat oes
yy

ets a Uy} a 7
Yj if Wildy)

UY LY, Wf

4-5

4.2 Data Recorder

1) Hardware

The MZ-800 is equipped with a data recorder.

SEY,

Y
YY LEE

YYfffresp yy YY) Uy WY YY yyy a

The function of each button is as follows.

PLAY

RECORD

FEWD

REWIND

STOP/EJECT) :

Note:

memory.

[_ counter reset
button

: Pressing this button plays the tape, to load a program or data from the cassette into

: Pressing this button saves a program or data from memory onto the cassette.

: Pressing this button fast forwards the tape.

: Pressing this button rewinds the tape.

Pressing this button stops the tape or ejects the tape when it is at a stop.

Counter reset button :

Pressing this button resets the counter to ‘‘000"’.

The | FFWD | and

sure to press the STOP | button when the tape end is reached.

46

REWIND | buttons are not automatically released when the tape end is reached. Be

2) Tape handling

* Any commercially available cassette tape can be used with the MZ-800. However, it is recommend-

ed that you use quality cassette tape produced by a reliable manufacturer.

* Use normal type tapes.

* Avoid using C-120 type cassette tapes.

* Use of C-60 or shorter cassette tapes is recommended.

* Be sure to remove slack from the tape by using a pencil or similar object before inserting the tape

into the data recorder.

Stack

* Keep a record of the program name and the counter values for the beginning and end of each pro-
gram after it has been saved.

* Do not store cassette tapes near a TV set or speaker system which generates a magnetic field.

* Protecting programs/data from accidental erasure

To prevent data from being accidentally erased, remove the record lock-out tab from the cassette with

a screwdriver or similar object. This will then make it impossible for the [RECORD | button to be pressed

accidentally, thereby preventing erasure of valuable data or programs.

Remove the record lock-out tab

with a screwdriver,

| Tab for side A oS
Tab for side B

47

Chapter 5 Programming Concepts

This chapter describes fundamental concepts which will allow you to program the MZ-800 in BASIC.

The information included in this chapter is essential to realizing the full potential of BASIC.

5.1 Multi-statement Lines and Line Numbers

As described in Chapter 3, a program consists of one or more program lines. Although each line of

the examples in Chapter 3 contains only one statement, a program line can contain two or more state-

ments, providing each statement is separated from each other by a colon (:). A program line which

contains two or more statements is called a multi-statement line.

Example:

10 CLS:PRINT ‘MULTI =STATEMENT"’:END

Each program line begins with a line number, Line numbers can be any number between | and 65535.

It is not necessary to specify line numbers consecutively, in fact, it is advisable to assign line numbers

in increments of ten so that you can insert additional lines during program editing.

5-2

5.2 Numeric Data and String Data

Data handled by the computer is categorized into numeric data and string data. Broadly speaking,

numeric data represents quantity or magnitude, whereas string data represents characters.

(1) Numeric data

The MZ-800 BASIC allows you to use numeric data in either decimal or hexadecimal notation. However,

data in either notation is converted to binary form by the computer so that it can be stored in memory

or used for calculations.
Decimal notation is probably the most familiar numbering system to you, and uses numerals from 0 to 9.

Hexadecimal notation uses numerals from 0 to 9, then characters A to F to represent the values from

10 to 15, With this system, the number of significant digits required to express numbers increases by

one each time the magnitude of the number being expressed increases by a factor of 16, Hexadecimal

numbers are indicated by prefixing ‘‘$’’ to the character as follows.

$41=4x 16'+1x 16°=65
$FA = 15x 16'+ 10x 16°= 250

Complements result for hexadecimal numbers greater than $7FFF.

For example, value resulting from $8000 is — 32768 and that resulting from $FFFF is —1,

(2) String data
All characters are represented by numeric codes in the computer, These numeric codes are based on

the ASCII code system. In this system, characters are represented by the numbers 0 to 255 or $00 to

SFF. For example, the character ‘‘A’’ is represented by 65 (decimal) or $41 (hexadecimal).

5-3

5.3. Constants

(1) Numeric constants
Numeric constants are positive or negative numbers. They can be represented in either their ordinary

form or an exponential form. Numeric constants must lie within the range 10** to 10°* (IE —38 to
1.70141 18E + 38), and the maximum number of significant digits is 8. If the value of a constant is out

of the range, the result of operation is not assured.

Ordinary integers and decimal numbers are represented in their normal form as follows.

123
-123.4
+12

The ‘‘+”" sign may be omitted for positive numbers.

Very large or small numbers are represented in the exponential form. In this form, a number is represented

by a number representing the mantissa, E, and a number representing the exponent. Use of ‘E”’ in

the exponential form is shown below.

1.23E+2

This represents 1.23 x 10x 10=123

—1.2E-1

This represents —1.2+10=—0.12

The ‘‘+’’ sign may be omitted for positive numbers. The mantissa must be less than 10 and greater

than —10 and the exponent must be an integer between —38 and +38.

(2) String constants

A string constant is a set of characters enclosed in quotation marks (** ’’). The maximum number

of characters in a string constant depends on the effective line length, but the total maximum number

of characters of string data permitted is 255. Examples of string constants are as follows.

“ABC!

"12345"

“"MZ-800""

Note:

Quotation marks are not required in DATA statements. (See Chapter 6.)

5-4

5.4 Variables

Variables are locations in memory which are used to hold values during program execution. You must

give a specific name to each variable when writing a program. Values held by these variables may be

arbitrarily changed during program execution.
There are three types of variables handled by MZ-800 BASIC: numeric variables, string variables and

system variables.

(1) Numeric variables

Numeric variables can hold only numeric data. The name of each variable may be composed of any

number of characters, but only the first two characters actually identify the variable. For example,

AB and XYZ are different variables, but ABC and ABD are handled as the same variable.

Lowercase letters cannot be used for variable names.
The first character must be a letter from A to Z, but the second and the following characters may

be any letter of the alphabet or numbers; however, special characters such as @ and * cannot be used.

No reserved words (see Appendix C.) may be used as the names of a variable. For example, PRINT

and C@ cannot be used as the names of variables.

Each numeric variable contains 0 until some value is given.

(2) String variables

A string variable can hold only string data, and its name can be assigned in the same manner and with

the same limitations as the name of a numeric variable. The only difference is that it is always followed

by a dollar sign ($).

Each string variable may contain a maximum of 255 characters of string data. Each string variable

includes only null characters until some stirng data is given.

(3) System variables
There are special variables called system variables, which are defined and used by the BASIC inter-

preter. The following table lists the system variables.

System variable Explanation

TI$ Contains a 6-digit number which is the time from a 24-hour built-in clock.
For example, the value ‘*192035”" indicates that the clock reads 19:20:35.

The clock is always set to 00:00:00 when the power is turned on.

SIZE Indicates the amount of free memory area which can be used for BASIC programs and
data.

ERN When an error occurs, this variable contains the corresponding error number.

ERL a When an error occurs, this variable contains the line number of the error.

CSRH Contains the column position at which the cursor is located.

0=CSRH 339 (40 column screen mode)

0sCSRH $79 (80 column screen mode)

CSRV Contains the line number at which the cursor is located.
0sCSRV524

POSH Contains the X-coordinate of the graphics position pointer.

— 16384 < POSH = 16383

POSV Contains the Y-coordinate of the graphics position pointer.
— 16384 <= POSV s 16383

5-5

5.5 Array Variables

An array is an arrangement of variables of the same data type, which are referred to by a common

name. Each variable of an array is identified by the common name, which is composed of a string

formed in the same manner as a variable name and followed by subscripts enclosed within parenthese,

e.g., A(X) and BS(x,y). An array with one subscript (such as A(X), B$(1) or P(100)) is called a one-

dimensional array, while that with two subscripts (such as A(x,y), B$(1,3) or P(50,25)) is called a two-

dimensional array. To use array variables in a program, the common name and the number of varia-
bles included in the array must be declared before they are used. For details see the explanation of
the DIM statement in Chapter 6.

* Note Concerning Computational Error

Computational error must always be taken into consideration whenever a computer is used.
The reason for this is that, although computational error can be reduced by increasing the number
of digits of numerical data which are handled, not even a computer can handle an infinite number
of digits. Further, the more digits are involved in any given calculation, the greater the amount
of time which is involved in completing it.

Therefore, it is important to be aware of the sources of error and to construct programs so
that error is minimized. (For example, use the sequence ‘5 *6/3”’ instead of “*5/3*6"’.)

Take the following into account when doing calculations in BASIC (1Z016) for the MZ-800.

(1) Rounding error

Rounding error is the error which results when the number of digits to the right of the decimal
place exceed the number of effective digits which can be handled. For example, when the num-
ber 2/3 is calculated, the true result is 0.666666666. . . (where the number of 6s is infinite).
However, if the number of effective digits is 8, the result will be rounded to 0.66666667.

(2) Error resulting upon conversion to binary form
Although numbers are ordinarily input in decimal format, they are internally converted to bi-
nary form for calculation.
According, a binary number with an infinite number of digits may result upon conversion even
if the original decimal number only has a few digits. For example, when the decimal number
0.1 is converted to binary form, the result is 0.00011001100. . . . Since this must be rounded
for calculation, a certain amount of error results.

(3) Increase in relative error due to subtraction
When one number is subtracted from another, the relative size of the error in the result will
be greater than that in the original numbers. This is illustrated in the example below, where
the digits which include error are marked with a dot (.). An error of +1 in the number 100012
corresponds to an error percentage of about 0.001%; however, relative error is much greater
after subtraction, since 11 +1 corresponds to a relative error of about 10%.

100012
~ 100001

i

(4) Error due to approximation

With a computer, exponentiation, trigonometric calculations, and logarithmic calculations are
done using approximation; in consequence, a certain amount of approximation error results
when such calculations are done.

5-6

5.6 Expressions

An expression is any combination of variables and constants which is combined with operators. Oper-

ators are symbols which perform mathematical or logical operations. The types of expressions han-

dled by the MZ-800 BASIC are as follows.

Arithmetic expressions

String connective expressions

Relational expressions

Logical expressions

(1) Arithmetic expressions

An arithmetic expression consists of arithmetic operators, numeric constants, numeric variables and

numeric functions, It calculates a numeric value from an operation(s) performed by the operator. (The

numeric functions will be explained later in this chapter.)

The table below lists the arithmetic operators arranged in order of operational priority.

[Arithmetic operator | Operation | Example

() | Gives the highest priority to enclose operations. | (X + Y)

t Creates an exponential value XTy

- Converts the sign of a value -X

«,/ Multiplication, devision | X*Y,X/Y

+= ros subtraction Ere ee

When an arithmetic expression includes operations of the same priority, they are performed in sequence

from left to right.

(2) String connective expressions

String connective expressions are used to combine two or more data strings into a single string. A string

connective expression consists of string constants, string variables, string functions and the operator

“*4'". (The string function will be explained later in this chapter.)

Example:

“ABC” +'’DEF’’ ““ABCDEF”
ON 4B EPC! .. “ABC”

5-7

(3) Relational expressions
Relational expressions are used to compare two values and ascribe a logical value of either true (— 1)

or false (0) to the expression according to the result of the comparison. The result is used to make

a decision regarding subsequent program flow, A relational expression can consist of constants, varia-

bles, arithmetic expressions, string connective expressions and relational operators.

The table below lists the relational operators.

joe Operate | Comparison Example

| Equal to X=Y

| < Less than X<Y

| > Greater than | X>Y

| <=, =< | Less than or equal to | X<=Y, X=<Y

>=, => | Greater than or equal to| X>=, X=>Y
= >< | Not equal to | x<>Y, X><Y

Note:

The relational values of character data are based on the characters’ ASCII codes.

(4) Logical expressions
A logical expression expresses the Boolean sum or product of true or false values (—1 or 0)
given by relational expressions. A logical expression is formed of logical values, relational ex-
pressions and logical operators. The following table lists the logical operators.

Operator Meaning | Example |

NOT Logical negation | NOT X |

AND Logical product XWAND Y

OR Logical sum X.OR Y

XOR__| Exclusive OR [XcxoryY |

Note:

Spaces indicated by —. must be included.

5-8

5.7 Files

A file is a program or a set of data which is output to or input from a peripheral device (such as a

data recorder). A file is identified by a file descriptor, which consists of a name (called the file name)

preceded by the name of the peripheral device (called the device name).

“‘<device name>:<file name>"

For example:

CMT:DEMO

RAM:TEST..
. The file named DEMO is output to or input from the data recorder.

. The file named TEST is output to or input from the RAM file board.

(1) File name

A file name can consist of up to 16 alphanumeric characters.

(2) Device name
The following table lists the device names which are used by the MZ-800 BASIC.

Device name Device

CMT: Data recorder

RAM: Optional RAM file board

CRT: Display device

LPT: Printer

RSL: .
RS2: RS-232C interface ports

5-9

5.8 Functions

(1) Numeric functions

Numerical functions such as SIN and COS perform arithmetic operations on given numeric expres-
sions then return the result. The MZ-800 is provided with the following numerical functions.

ABS(X) — Absolute value

Returns the absolute value of numeric expression X.

Example: A= ABS(X). When X=2.9, A=2.9; when X= —5.5, A=S.5.

SGN(X) — Sign

Returns 1, —1, or 0 according to whether numeric value X is greater than, less than, or equal to 0,
respectively.

Example: A=SGN(X). When X=0.4, A=1; when X= —1.2, A=—1.

INT(X) — Integer

Returns the largest integer which is less than or equal to X.
Example: A=INT(X). When X =3.87, A=3; when X=0.6, A=0; when X= —3.87, A= -—4,

SQR(X) — Square root

Returns the square root of X. The value specified for X must be greater than or equal to 0.
Example: A=SQR(X). When X=4, A=2.

EXP(X) — Exponential

Returns the value of the natural base e to the power of X.
Example: A=EXP(X)

Trigonometric Functions

SIN(X)

Returns the sine of X, where X is an angle in radians.

Use the following expression to obtain the sine of an angle in degrees.
SIN (X * 7/180)

Example: A= SIN(X)

COS(X)

Returns the cosine of X, where X is an angle in radians.

Use the following expression to obtain the cosine of an angle in degrees.
COS (X * #/180)

Example: A =COS (X)

TAN(X)

Returns the tangent of X, where X is an angle in radians.

Use the following expression to obtain the tangent of an angle in degrees.
TAN (X * 7/180)

Example: A= TAN(X)

ATN(X)

Returns the arc tangent of X in radians. The value returned is within the range —2/2 to x/2.
Use the following expression to obtain the arc tangent of X in degrees.
ATN (X)* 180/x

Example: A= ATN(X)

5-10

LOG(X) — Common logarithm

Returns the common logarithm of X (logioX), where X must be greater than 0,

Example: A=LOG(X)

LN(X) — Natural logarithm

Returns the natural logarithm of X (logeX), where X must be greater than 0.

Example: A =LN(X)

PAI(X) — Circular constant

Returns the value which is X times pi.

(PAI(1) = 4 =3.1415927)
Example: A=PAI(X) or A=47*X

RAD(X) — Radian

Converts the numeric value X from degrees into a value in radians.

Example: A= RAD(X)

(2) Character functions
A character function processes character strings. The MZ-800 BASIC supports the following charac-

ter functions. In the examples below, character variable A$ contains the character string ““ABCDEFG”’.

LEFTS(x$,n)
x$: character string

n: numeric value (from 0 to 255)

Returns a string consisting of the left n characters of string XS.

Example: B$ = LEFT$(A$,2) produces string ‘‘AB’”

MIDS$(x$,m,n)
x$: character string

m: numeric value from 1 to 255

n: numeric value from 0 to 255

Returns a string consisting of n characters following the mth character from the beginning of string xS.

Example: B$ = MIDS$(A$,3,3) produces string ‘“CDE”’.

RIGHTS(x$,n)
x$: character string

n: numeric value (from 0 to 255)

Returns a string consisting of the right n characters of string x$.

Example: B$ = RIGHT$(AS,2) returns a string consisting of the right 2 characters of string A$. There-

fore, variable B$ is returned as the string ‘‘FG’’,

Functions used with the PRINT statement

TAB(n)
n: numeric value

Moves the cursor to the (n+ 1)th character position from the left end of the current line.

This function is ignored when n is less than the current cursor location.

Example: PRINT ‘‘A’’;TAB(3);“*ABC”
A ABC

012345 + column positions which are not displayed.

t String ‘ABC’ is displayed from column 3.

5-11

SPC(n)

n: numeric value

Returns a string of successive spaces, the length of which is expressed by n.

Example: PRINT ‘‘A’’;SPC(3);‘ABC”’
A ABC

0 1 23 4 5 6 * column positions which are not displayed.
oy

3 spaces

(3) Numeric value/character string conversion functions

The following functions convert a numeric expression into a character string or vice versa.

STRS(n)
n: numeric value

Converts numeric value n into a character string.

(A hexadecimal value is preceded by $.)

Examples: A$ =STRS$(— 12)

The character string ‘‘—12’’ is returned as A$.

B$ =STR$(70* 33)
The character string ‘‘2310"’ is returned as BS.

C$ =STR$(1200000 * 5000)

The character string “‘6E +09”’ is returned as C$.

Note:

A positive integer displayed or printed is preceded by a single space which indicates that the plus sign

(+) is valid but has been omitted. However, this space is deleted when the integer is converted into

a string by the STR$ function.

VAL(x$)
x$; character string

Converts a character string into a numeric value.

Example: A= VAL (‘123°’)
The string ‘‘123’’ is converted into the numeric value 123.

A=VAL (“‘$FF”’)
A string ‘‘$FF”’ is converted into the numeric value 255.

ASC(x$)
x$: character string

Returns the numeric value which is the ASCII code for the first character of string X$.

Examples: X = ASC(‘‘A’’)

Returns the numeric value 65, which is the ASCII code for character ‘‘A’’.

Y = ASC(‘‘SHARP”’)
Returns the numeric value 83, which is the ASCII code for the first character of

the string ““SHARP”’.

CHRS(n)
n: numeric value (greater than 32)

Returns the character whose ASCII code is integer expression n.

When a space is to be displayed, use PRINT “‘..”” or PRINT SPC(1).

Examples: A$ = CHR$(65)

Returns ‘‘A’’, which has an ASCII code of 65.

PRINT CHR$(107)

Displays the graphics character ‘‘fQ’’, which has an ASCII code of 107. Multiple

ASCII codes can be specified as follows:

A$ = CHR$(65,66,67,68)

LEN(x$)
x$: character string

Returns the number of characters in string x$.

Example: A=LEN(‘‘ABC’’)

Returns the number 3, which is the number of characters in string ‘‘ABC’’.

(4) Random number functions

RND(n)

n: numeric value

This function returns a pseudo random number for a given numeric value.

* Pseudo random numbers are generated from values between 0.00000001 and 0.99999999.

* When the numeric value specified is greater than 0, the function gives the next pseudo-random number

in the current sequence.

* When the numeric value is less than or equal to 0, RND generates a new pseudo-random number

set whose initial value is determined by the value specified for X, and gives the first number of

the new set. This makes an operation such as a simulation with random numbers repetitive.

Example:

To generate a random number which is an integer from N to M, use the following formula:

INT(RND(X) * (M—N +1) +N)

The following program draws a number of circles. The radius of the circles and the coodinates are

given by the random number.

10 FOR A=1 TO 100
20 B=RND(1)* 320

30 C =RND(1)* 200
40 D=RND(1)* 100

50 E=INT(RND(1)* 4)
60 CIRCLE [E,0]B,C,D
70 NEXT A

80 END

(5) Joystick functions

STICK(f)
f: numeric value

Returns an integer from 1 to 8 which indicates the state of the joystick lever or the cursor control keys

on the keyboard. The numeric value f specifies the device from which the data is read, as shown below.

0: Cursor contorl keys of the keyboard

1: Joystick 1

2: Joystick 2

The relationship between the integer and the direction in which the joystick lever is pushed (or the

cursor control keys are pressed) is as follows:

Cursor control key

When the keyboard is selected by specifying 0 as f, integers 2, 4, 6, and 8 are returned when two cursor

control keys are pressed at the same time, as shown below.

2: [1] and [6]
4: [2] and 11)
6: [1] and [<]
8: [+] and eal

STRIG(f)

f: numeric value

Returns an integer 0 or 1 which indicates the state of the joystick button or the space bar on the key-

board. When the space bar on the keyboard or the joystick button is pressed, 1 is returned and when

they are not pressed, 0 is returned. The integer value f specifies the device as follows:

0: Keyboard space bar

1; Joystick 1 button
2: Joystick 2 button

The following program uses STICK and STRIG functions. It draws a vertical, horizontal or inclinded

line when a cursor key is pressed, and clears the screen when the space bar is pressed.

10 INIT “CRT:M1”

20 A=STICK(0):B =STRIG(O)

30 ON A GOSUB 200,300,400,500,600,700,800,900
40 IF X<0O THEN X=0

50 IF X>319 THEN X=319
60 IF Y<O THEN Y=0

70 IF Y>199 THEN Y=199
80 SET X,Y

90 IF B=1 GOTO 10
100 GOTO 20
200 Y =Y — 1:RETURN

300 X=X+1:Y=Y—1:RETURN
400 X=X + 1:RETURN
500 X=X+1:Y=Y +1:RETURN

600 Y =Y + 1:RETURN
700 X=X—1:Y =Y¥ + T:RETURN

800 X =X — 1:RETURN
900 X =X —1:Y =Y— 1:RETURN

5.9 Screen Coordinates

Screen coordinates are used to specify the screen position in which characters and graphic data are

to be displayed by display commands. Such coordinates are expressed in terms of a horizontal position

and a vertical position. Character display positions are specified using character coordinates, and graphic

display positions are specified using graphic coordinates.

* Character coordinates

(0,0) (39,0) {0,0} (79,0)

(0,24) (39,24) (0,24) (79,24)

With 40 character line mode With 80 character line mode

© Graphic coordinates

{0,0} (319,0) (0,0) (639,0)

(0,199) (319,199) (0,199) (639,199)

320 x 200 mode 640 x 200 mode

The ranges of both character coordinates and graphic coordinates vary according to mode. The mode

is specified with the INIT command.

5-16

Chapter 6 MZ-800 BASIC Commands
and Statements

This chapter explains the MZ-800 BASIC (1Z-016) commands and statements. These commands and
statements are functionally divided into the following eight groups.

© Fundamental commands

© Fundamental statements
* File control statements

* Graphics statements

* Music control statements

© Printer control statements

* Machine language control statements

© Error processing statements.

The commands and statements for the MZ-700 mode are summarized in Chapter 9,

Format Notations

The following rules apply to specification of commands, statements, and functions.

Angle brackets ‘‘< >" indicate items which must be specified by the user.

Items in square brackets “‘[]"’ are optional.

Items in { } are mutually exclusive; and only one of the items shown can be included when the state-
ment is executed.

«+ indicates that the item preceding ... may be specified repeatedly.

6-2

6.1 Commands

AUTO

Format

Explanation

Example

AUTO [<starting line number>][,<increment >]

Abbreviated Format
A.

The AUTO command automatically generates program line numbers during entry

of BASIC program statements.

The default setting of both parameters is 10.

(Example 1)

AUTO LC

10) sox CR

(Example 2)

AUTO 300,
300 ...

305 .

310.

Example 2 automatically generates program line numbers, incrementing by 5 start-

ing at line 300.

(Example 3)

AUTO 100
100 LCR

- LCR
CR

Example 3 generates program line numbers with an increment of 10, starting at line

100.

(Example 4)

AUTO, 20 LC
ION, Ci

30
50.

Example 4 generates program line numbers with an increment of 20, starting at line 10.

Note:

The AUTO command is terminated by pressing and "

DELETE

Format

Explanation

Abbreviated Format

DELETE [<starting line number> [—] <ending line number>]

DELETE <line number >

D.

Deletes program lines from <starting line Inumber> to <ending line number>.

Example DELETE 150—350 LC. . Deletes all program lines from 150 to 350.

DELETE —100|CR . Deletes all program lines up to line 100.

DELETE 400— [CR].......... Deletes all program lines from 400 to the end of the

program.
DELETE 150 [CR]............. Deletes line 150.

LIST

Format

Abbreviated Format

LIST [/P] [<starting line number>] [—] [<ending line number >]

Explanation

Example

L.

The LIST command lists on the display screen all or part of the program lines con-

tained in the BASIC text area of the memory.

Output of the program listing to the display screen can be temporarily interrupted

by pressing the space bar; listing is then resumed when the space bar is pressed again.

To terminate the listing, press the + keys.
The program listing can be output to the printer by entering LIST/P.

LIST LC . Lists the entire program.

LIST —30 . Lists all lines of the program up to line 30.

LIST 30— .. Lists all lines of the program from line 30 to the end.

LIST 30— . Lists all lines of the program from line 30 to line 50.

LIST 30 . Lists line 30 of the program.

6-4

SEARCH

Format SEARCH [/P]<text data>

Abbreviated Format

Explanation

Example

SE.

The SEARCH command searches the BASIC program in memory for lines which

contain the character string specified in <text data> and displays any found lines

on the screen. When specifying a double quotation mark (’’) in <text data>, use

CHR&(34).
Display of matching lines can be suspended by pressing the SPACE bar. Pressing

the SPACE bar again will resume display. To terminate the SEARCH command,

press + . The /P option directs the output of the SEARCH

command to the printer.

SEARCH ‘ABC’? 2... .sccsccccss Searches for then displays on the screen the program

lines that contain the character string ‘‘ABC’’.

SEARCH ‘‘PRINT’’ +CHR$(34) + ‘’A’’ + CHRS(34) Searches for program lines

that contain PRINT “‘A’’.

RENUM

Format

Explanation

Example

RENUM [<new line number >] [,<old line number>] [,<increment>]

Abbreviated Format
REN.

The RENUM command renumbers the lines of a BASIC program. When this com-

mand is executed, note that line numbers referenced in branch statements such as

GOTO, GOSUB, ON~ GOTO, and ON~ GOSUB are also reassigned.

RENO Mi asrncreperrecscenresnianee Renumbers the lines of the current program in

memory so that they start with 10 and are incremented

in units of 10.

RENUM 100 \siscvsswsaevercensavs Renumbers the lines of the current program in

memory so that they start with 100 and are increment-

ed in units of 10.
RENUM 100,50,20..........-. Renumbers lines of the current program in memory,

which starts at line number 50. Line number 50 is

renumbered to 100, and subsequent line numbers are

incremented in units of 20.

(Before renumbering) (After renumbering)

50 A=1 100 A=1

60 A=A+1 120 A=A+1

70 PRINT A 140 PRINT A

100 GOTO 60 160 GOTO 120

Note:
When specifying the new and old line numbers, the new line number specified must

be larger than the old line number. Note that an error will result if execution of

this command results in the generation of a line number which is greater than 65535.

6-5

NEW

Format

Explanation

Example

NEW

The NEW command deletes programs in the BASIC memory area and clears pro-
gram work areas such as the variables and arrays. When the BASIC area is limited
with the LIMIT statement, the NEW command deletes only the programs in the

BASIC area; it does not delete machine-language programs.

10 INPUT A

20 PRINT A

30 END

When the above program is in memory, executing NEW will delete the program.

(Confirm the deletion by using the LIST command.)

NEW ON

Format

Explanation

NEW ON

Expands the BASIC program area by deleting part of the BASIC interpreter which
is relating to the plotter printer control. This command can be used only when the
optional printer (MZ-1P16) is not used. This command deletes programs in the BASIC
memory area.

Example NEWON ccreaascawacsamece Expands the BASIC program area.

CLR

Format CLR

Explanation

Example

The CLR command clears all variables and cancels all array definitions. All numer-
ic variables are cleared to 0, all string variables are cleared to null strings (‘ ’’) and
arrays are eliminated entirely by nullifying all previously executed DIM statements.
Therefore, DIM statements must be reexecuted to redefine the dimensions of any

required arrays before the arrays can be used again.

The CLR command also cancels all function definitions made with the DEF FN
statement; therefore, it is necessary to reexecute DEF FN statements to redefine such
functions before they can be used again.

The CLR command can not be included in a FOR ~ NEXT loop or subroutine.
10 A=12

20 B$ ="'parasol’’

30 PRINT A,BS

40 CLR
50 PRINT A,BS

60 END

The CLR statement on line 40 clears variable A to zero and BS to nulls.

6-6

CONT

CONT

Abbreviated Format

See also

Cc,

The CONT command is used to

interrupted by pressing |SHIFT

resume execution of a program which has been

+ [BREAK] or by a STOP statement in the
program, When the message ‘‘Ready’’ is followed by a period (.), the CONT com-

mand can be used. Examples of situations in which the CONT command can and

cannot be used are shown in the

Program continuation possible

table below.

© Program execution “rapes d "a
pressing (SHIFT] + [BREAK] .

© Program execution stopped by a

STOP command.

Program continuation not possible * Before a RUN command has been

executed.
« “‘Ready”’ is displayed due to an

error occurring during program
execution.

¢ When cassette operation has been

interrupted by pressing | SHIFT | +

(BREAK }.
* When program execution has stopped

during execution of a MUSIC
statement.

¢ After program execution has stopped

and “Ready” is displayed after
execution of the END statement.

STOP

6-7

RUN

Format

Explanation

RUN [<starting line number>]

Abbreviated Format

R.

The RUN command executes the current program in the BASIC text area of memory.

If the program is to be executed starting at the first program line, simply enter RUN

and press the[CR | key. If execution is to begin with a line other than the lowest line
number, type in RUN, <starting line number >, then press the[CR | key. When this

command is executed with no <starting line number > specified, the BASIC inter-

preter clears all variables and arrays before passing control to the BASIC program.

RUN

RUN 200.
.. Executes the program from the beginning.

.. Executes the program starting at line 200.

6-8

6.2 Fundamental Statements

CLS

Format CLS

Explanation The CLS statement clears the entire screen irrespective of the screen boundaries es-

tablished by the CONSOLE command.

Example VOICES: sn serncsasconpncpesen Clears the entire screen.

See also CONSOLE

CONSOLE

Format

Explanation

CONSOLE [<starting line>,<number of lines>]

Abbreviated Format

CONS.

The CONSOLE command specifies the size of the scrolling area; i.e., the area which

is cleared by specifying the CLS statement or pressing the and keys.

This command becomes invalid after a PLOT ON command has been executed.
Specify an appropriate value for the <number of lines> when editing; that is the

<number of lines> must not be too small because it is harder to perform screen

editing within a small scroll area.

<starting line> ae”
\ \\\ } <number of lines >

[| 24

CONSOLE 0,25 or CONSOLE .. Scrolls the entire screen.
CONSOLE! 6, 16 vs cacvecscseesacesise Scrolls the area between lines 5 and 15, inclusive.

CURSOR

Format

Explanation

See also

CURSOR <X-coordinate>, <Y-coordinate>

Abbreviated Format

CU.

The CURSOR statement moves the cursor to a specified position on the screen. It

can be used together with the PRINT and INPUT statements to display characters

at any desired location. The value of the < X-coordinate > must fall within the range

for the screen mode specified in the INIT statement. The value of the

<Y-coordinate> must be an integer from 0 to 24. If the value specified for either

X or Y is other than an integer, it is converted to one by truncating the decimal

fraction before the cursor is moved.

10 CURSOR! 8: 10 siseciiacs Moves the cursor to point (8,10). After this statement

is executed, when a PRINT or INPUT statement is
executed the display will start at this point.

() 8 39

1 r
9 (8,10)

24
<40-character screen mode >

TAB, SPC

6-10

Format

Explanation

REM (remark)

REM is a non-executable statement which is specified in a program line to cause

the BASIC interpreter to ignore the remainder of that line. Since REM statements

are non-executable, they may be included at any point in the program without af-

fecting the program’s execution. REM statements are generally used to make a pro-

gram easier to read, or to add explanatory notes to a program.

Example 10 REM *** MZ—800 ***

LET

Format LET <variable> = <expression>

Explanation The LET statement assigns the value (numeric or string) specified by < expression >

to the variable or array element specified by < variable >. As shown in the example

below, LET may be omitted.

Example 10 A=10 10 LET A=10
20 PRINT A 20 PRINT A
30 END 30 END

The two programs above produce exactly the same result.

10 LET N=32

This statement assigns 32 to variable N.

10 LET A=A+5
This statement adds 5 to variable A.

10 LET B$ ="SUNDAY”’

This statement assigns character string ‘‘SUNDAY” to character variable BS.

A=1LCR

This is an example of a command in the direct mode. 1 is assigned to variable A.

The following are examples of incorrect use of the LET statement.

20 LET AS=A+B.............. This is invalid because different types of variables

(string and numeric) have been specified on either

sides of the ‘‘="’ sign.

20 LET LOGILK)=LK+1..... Invalid because the left side of the statement is not

a numeric variable or array element.

6-11

STOP

Explanat ion

STOP

Abbreviated Format

Ss.

Temporarily stops program execution, displays the line number at which execution

stops, then waits for the entry of executable commands in the direct mode.

The STOP statement is used to temporarily interrupt program execution, and may

be inserted at as many points and locations in the program as required. Since exe-

cution of the program is only interrupted temporarily, the PRINT statement can

be used in the direct mode to check the values stored in variables, after which exe-

cution can be resumed by entering CONT is

10 READ A,B

20 X=A*B

30 STOP

40 Y=AIB

50 PRINT X,Y

60 DATA 15,5

70 END

RUN

Break in 30
Ready. + This period indicates that the program can be continued by CONT.

Note:
Unlike the END statement, no files are closed by the STOP statement.

CONT

6-12

END

Explanation

END

The END statement terminates program execution and returns the BASIC inter-
preter to the command mode for input of direct mode commands. When this state-
ment is executed, ‘‘Ready”’ is displayed to indicate that the BASIC interpreter is
ready. After the END statement has been executed, execution cannot be resumed
by executing the CONT command even if there are executable statements on pro-
gram lines following the END statement.

Note:

All open files are closed when the END statement is executed.

Differences between the STOP and END statements

Screen display | Files Resumption of execution
STOP | Break in x x x x Open files are | Can be resumed by executing

Ready. not closed. CONT.

END | Ready Open files are | Cannot be resumed.

closed.

6-13

FOR ~ NEXT

Format

Abbreviated Format

FOR <control variable> = <initial value> TO <final value>

IBTEE, <increment >]

NEXT <control variable >

Explanation

Example

F.~N.

The FOR ~ NEXT statements repeat the instructions between the FOR and NEXT

variables the specified number of times.

10 A=0

20 FOR N=0O TO 10 STEP 2

30 A=A+1

40 PRINT “N="";N,

50 PRINT “A=""A

60 NEXT N

(1) In the program above, 0 is assigned to N as the initial value.

(2) Next, lines 20 through 50 are executed and the values of variables A and N dis-

played.

(3) In line 60, the value of N is increased by 2, after which the BASIC interpreter

checks to see whether N is greater than 10, the final value. If not, lines follow-

ing line 20 are repeated.

When the value of N exceeds 10, the program leaves the loop and the subsequent

instructions (on lines following line 60) are executed. The program above repeats

the loop 6 times.

If STEP <increment> is omitted from the statement specification, the value of

<control variable> is increased by | each time the loop is repeated. In the pro-

gram above, omitting STEP2 would result in 11 repetitions of the loop.

FOR Nag TO 10 STEP 2

Initial value Final value — Increment
of N for N for N

NEXT N

FOR ~ NEXT loops may be nested within other FOR ~ NEXT loops. When doing

this, inner loops must be completely enclosed within outer ones, and not overlap.

Also, separate control variables must be used for each loop.

6-14

Example 10 FOR X=1T09

20 FOR Y=1TO9

30 PRINT X#*Y; Inner loop

40 NEXT Y

50 PRINT

60 NEXT X

70 END

Outer loop

10 FOR A=1 TO 3——,

20 FOR B=1 TO 5——+

30 FOR C=1 TO 7

110 NEXT C

120 NEXT B————_~ 110 NEXT C,B,A

130 NEXT A

When loops C, B, and A all end at the same point as in the example above, one

NEXT statement may be used to indicate the end of all the loops.

Incorrect example:

FOR J=1 TO 10

Fron J=KTOK+5

NEXT J

Different control variables must be used in each loop.

FOR 1=1 TO 10

FOR J=K TO K+5

NEXT |

NEXT J

Loops may not overlap each other.

Note:

The syntax of BASIC does not limit the number of levels to which loops may be

nested; however, space in the memory is required to store return addresses for each

level, so the number of levels is limited by the amount of free memory space available.

The CLR and LIMIT statements cannot be used within a FOR ~ NEXT loop.

6-15

LABEL

Format

Explanation

Example

See also

LABEL “‘<label name>”

Abbreviated Format
LA.

The LABEL statement defines a label. Labels are used to define the destination to

which program execution will transfer from the GOTO or GOSUB statement. Proper

use of labels in your program will substantially improve program readability.

10 PRINT ‘‘SAMPLE"

20 GOSUB ‘’ABC’’

30 PRINT “END”

40 END

100 LABEL “‘ABC’’

110 PRINT ‘‘LABEL SAMPLE’’

120 RETURN

Line 100 defines the label ‘‘ABC”’ as the destination of the GOSUB statement on
line 20. After the GOSUB statement on line 20 is executed, control is transferred

to the subroutine starting at line 100.

GOTO

GOSUB

GOTO

Format GOTO/<line number >

<label>

Abbreviated Format
G.

Explanation

Example

The GOTO statement unconditionally transfers program execution to the line number

specified in <line number> or <label>. If <line number> or <label> points

to a line which contains executable statements (statements other than REM or DATA
statements), execution resumes with that line; otherwise, execution resumes with

the first executable statement following <line number> or <label>.

10 N=1
20 PRINT N
30 N=N+1
BOTGCOTO 20 inenes ewesprmannes Transfers program execution to line 20.

50 END

Since execution of the program shown above will continue indefinitely, stop it by

pressing the and keys together (this may be done at any time to

stop execution of a BASIC program). To resume execution, execute the CONT

command.

Note:
The line number specified in a GOTO statement may not be for a line inside a

FOR ~ NEXT loop.

LABEL

GOSUB
6-16

ON~GOTO

Format

Explanation

See also

ON <numerical expression> GOTO { <line number> [,<line number>] ...

<label> [,<label>] ...

Abbreviated Format
ON~G,

The ON ~ GOTO statement branches execution to one of the line numbers follow-

ing GOTO, depending on the value of <numeric expression>. The value of

<numeric expression > indicates which of the line numbers following GOTO will

become the branch destination. Therefore, if <numeric expression> is 1, execu-

tion branches to the first line number in the list; if <numeric expression> is 2,

execution branches to the second line number in the list, etc. For example:

100 ON A GOTO 200,300,400,500

Destination when
A is 1 = line 200
A is 2 = line 300
A is 3 = line 400

Ais 4 = line 500

10 INPUT''NUMBER"’;A

20 ON A GOTO 50,60,70

30 GOTO 10

50 PRINT ‘’XXX"" : GOTO 10

60 PRINT “*YYY’ : GOTO 10

70 PRINT ‘’ZZ2Z'' ; GOTO 10

RUN

NUMBER 1

XXX

NUMBER 2

YYY

NUMBER

If a decimal number such as 1.2 is specified, the decimal fraction is truncated be-

fore the statement is evaluated.

Note:

When the value of <numeric expression> in an ON~ GOTO statement is greater

than the number of line numbers specified following GOTO, execution continues

with the next line of the program. This also applies if the value of <numeric

expression > is less than | or negative.

Further, if the value of <numeric expression> is a non-integer, the decimal frac-

tion is truncated to obtain an integer value before the statement is evaluated.

GOTO
ON GOSUB

GOSUB ~ RETURN

Format GOSUB {<line number >

<label>

RETURN

Abbreviated Format

Explanation

GOS. ~ RE.

The GOSUB statement transfers program control to a subroutine identified with

<label> or beginning at the line number specified in <line number>. After the

subroutine has been executed, control is returned by the RETURN statement to the

line following the GOSUB statement.

A subroutine is a set of statements that may be used more than once in a program.

One subroutine may call another subroutine which may call still another subrou-

tine. Nesting of such subroutines is limited only by the available memory space.

Each called subroutine must have a RETURN statement at the end.

10 INPUT A, B

20 GOSUB 100

30 B=C ¥
40 GOSUB 100 10 — 60 Main program

50 PRINT C

60 END

100 C=AT2+B
110 RETURN } 100 — 110 Subroutine

6-18

ON ~ GOSUB

Format ON <numeric expression> GOSUB { <line number >[,<line number >] ...
<label> [,<label>] ...

Abbreviated Format
ON~GOS.

Explanation The ON ~GOSUB statement branches program execution to the subroutine indi-

cated by one of the line numbers following GOSUB, depending on the value of

<numeric expression>. The operation of this statement is basically the same as

with the ON~GOTO statement, but all branches are made to subroutines. Upon

return from the subroutine, execution resumes with the first executable statement

following the ON~ GOSUB statement which made the call.

Example Let us try using the ON~GOSUB statement in a scheduling program. The most

important point to note in the following program is that, a subroutine call is made

at line 180, even though line 180 itself is part of a subroutine (from line 170 to 190)

which in turn is called by line 90, Subroutines can be nested to many levels in this

manner.

10 A$=" ENGL "': BS="" MATH ": C$="" FREN ”’
20 D$=" SCI ": E$="" MUS) ": F$=" GYM "

30 G$=" HIST ": H$="" ART “': 1$="' GEOG "
40 J$="" BUS =“: K$="" H RM ": CLS

50 INPUT ‘‘WHAT DAY?"';X$
60 FOR Z=1 TO 7:Y$=MID$("SUNMONTUEWEDTHUFRISAT”, 1 +3#(Z—1),3):

IF Y$=X$ THEN X=Z
70 NEXT Z
80 FOR Y=0 TO 4: PRINT TAB(5+6*Y);Y +1;

90 NEXT Y: PRINT
100 ON X GOSUB 180,120,130,140, 150,160,170

110 PRINT: GOTO 50
120 PRINT ‘MON ‘';A$;B$;D$;G$;K$:RETURN

130 PRINT “* TUE $;E$;H$;H$;D$:RETURN
140 PRINT "WED $;C$;1$;A$;F$:RETURN
150 PRINT "THU '';B$;D$;F$;G$;E$:RETURN
160 PRINT “FRI; ‘AS; D$;1$;C$;C$:RETURN
170 PRINT “‘SAT ‘’;B$;G$;D$;K$:RETURN

180 FOR Y=1 TO 6
190 ON Y GOSUB 120,130,140,150,160,170

200 PRINT:NEXT Y

210 RETURN

6-19

IF ~ THEN ~ :ELSE

Format IF { <relational expression> | THEN { <statement>

\ <logical expression > } <line number >

<label>
(:ELSE {<statement>)]

<line number >

<label>

Abbreviated Format

IF ~TH.~:EL.

IF ~ THEN ~:ELSE statements are used to control branching of program execu-

tion according to the result of a logical or relational expression. When the result

of such an expression is true, statements following THEN are executed. If a line

number is specified following THEN, program execution jumps to that line of the
program.

If the result of the logical or relational expression is false, statements following ELSE

are executed. If a line number is specified following ELSE, program execution jumps
to that line.

If :ELSE is omitted and the result of expression is false, execution continues with

the next program line after the IF~ THEN statement.

Explanation

(When ELSE is not used) (When ELSE is used)

‘onditional
expression
atistiod?

NO ‘onditional
‘expression
satisfied?

YES YES

[THEN THEN
Wa line number [if a statement || |if'aline number [I a statement
of label is is specified, it is|| | or labet is ified, it is
specified executed specified. executed.

J
Execution jumps
to the specified
line oF label.

Execution jumps Afterwards, pro-
to the specified — gram execution
line or label. advances to the

next line.

Afterwards, pro- |
gram execution
advances to the
ext line

ELSE
If a line number |If # statement

is specified, it is
executed.

To next line

6-20

Execution jumps
to the specified
line oF label.

Afterwards, pro-
gram execution
advances to the
next line.

Example 10 IF C<1 THEN C=3 :ELSEC=C-—1

This statement assigns 3 to C if C is less than 1; otherwise, assigns C-1 to C.

10 IF C< >D THEN 150 :ELSE END

This statement causes jump to line 150 if C is not equal to D; otherwise, ends pro-

gram execution.

10 IF AS="‘ABC’’ THEN A$ =AS + "'DEF”’

This statement assigns ‘‘ABCDEF”’ to AS if A$ contains “‘ABC’’; otherwise, the

program proceeds to the next line.

Note:

(Precautions on comparison of numeric values with BASIC 1Z-016)

Numeric values are represented internally with binary floating point representation;

since such values must be converted to other forms for processing or external dis-

play (such as in decimal format with the PRINT statement), a certain amount of

conversion error can occur.

For example, when an arithmetic expression is evaluated whose mathematical result

is an integer, an integer value may not be returned upon completion of the opera-

tion if Values other than integers are handled while calculations are being made.

Be aware of this and take it into consideration when evaluating relational expres-

sions using ‘*="’.

This need is illustrated by the sample program below, which returns FALSE after

testing for equality between 1 and 1/100* 100.

10 A=1/100* 100

20 IF A=1 THEN PRINT ‘‘TRUE’’:ELSE PRINT ‘‘FALSE"’

30 PRINT “A=";A

40 END

RUN

FALSE

A= 1

The fact that both ‘‘FALSE”’ and ‘‘A=1"’ are displayed as the result of this pro-

gram shows that external representation of numbers may differ from the number’s

internal representation in the computer.

6-21

IF~GOTO

Format

Explanation

Example

IF | <relational expression>| GOTO | <line number>

| <logical expression> | | <label >
Abbreviated Format

IF~G.

The IF ~ GOTO statement sequence evaluates the condition defined by <relational

or logical expression > , then branches to the line number specified in <line number>

or <label> if the condition is satisfied. As with the IF~THEN sequence,

IF ~ GOTO is used for conditional branching. When the specified condition is satis-

fied, the program execution jumps to the line number specified in <line number >

or <label>. If the condition is not satisfied, execution continues with the next line

of the program. (Any statements following IF~ GOTO on the same program line
will be ignored.)

10 T=0:N=0

20 INPUT ‘‘VALUE='';X

30 IF X=999 GOTO 100

40 T=T+X:N=N+1

50 GOTO 20

100 PRINT '*#### eee RHR”

110 PRINT “'TOTAL:";T

120 PRINT ‘‘NO. ENTRIES:’’;N

130 PRINT “‘AVERAGE:"';T/N

140 END

The above example gives the total and average of input values. If 999 is input, pro-
gram execution is terminated.

GOTO

IF ~ THEN ~ :ELSE
IF ~GOSUB

6-22

IF ~GOSUB

Format IF | <relational expression> | GOSUB | <line number >

<logical expression> | | <label>

Abbreyiated Format

IF ~GOS.

Explanation The IF ~ GOSUB statement evaluates the condition defined by < relational or logi-
cal expression >. If the condition is satisfied, the program execution branches to

the subroutine beginning on the line number specified in <line number> or

<label>. Upon completion of the subroutine, execution returns to the first executa-

ble statement following the calling IF~GOSUB statement. Therefore, if multiple

statements are included on the line with the IF ~GOSUB statement, execution returns

to the first statement following IF~GOSUB.

10 INPUT "” X= "";X
20 IF X<O GOSUB 100:PRINT *’*X<0"’

30 IF X=0 GOSUB 200:PRINT ‘’X=0"

40 IF X>O GOSUB 300:PRINT ''X>0"’

50 PRINT '* #*# # kek RR RR RR RRR RR!

60 GOTO 10

100 PRINT ‘’ * PROGRAM LINE 100 ‘':RETURN

200 PRINT ‘' * PROGRAM LINE 200 ‘':RETURN

300 PRINT ‘' * PROGRAM LINE 300 ‘*:RETURN

See also GOSUB ~ RETURN

IF ~ THEN ~ :ELSE

IF~GOTO

6-23

PRINT

Format

Explanation

PRINT [<palette code>] <data> |: cn we

Abbreviated Format
?

The PRINT statement displays data on the screen. <palette code> specifies the

palette code for the colour of the text on the screen. If this code is omitted, the

palette code specified in the colour statement is assumed.

When a semicolon is used to delimit two <data> items, it causes them to be dis-
played with no extra space. A comma, on the other hand, causes 10-character tabu-

lations to be performed between the printout of each <data> item. If no <data>

item is specified, this command performs a line feed.

Numeric data is displayed by this statement in one of two formats: real number

format or exponential format. Numeric values in the range from 1 x 10°* to 1 x

10° are displayed in real number format; those beyond this range are displayed in
exponential format.

10 PRINT [2] ‘‘ABC’’;123 ... Displays the text data ‘‘ABC’’ and numeric data 123

with no space in the colour corresponding to palette

code 2.

20 PRINT [3] “‘ABC’’,123 ... Displays the text data ‘‘ABC”’ and numeric data 123

with a 10-character tabulation between them, The
colour assigned to palette code 3 is used.

Note:

Some special uses of the PRINT statement are shown below.

PRINT “J” Clears the entire screen and moves the cursor to the home position
the upper left corner of the screen).

PRINT “J” Moves the cursor to the home position without clearing the screen.
PRINT “J” Moves the cursor one column to the right.
PRINT “J” Moves the cursor one column to the left.
PRINT “‘’’ Moves the cursor up one line.
PRINT “J” Moves the cursor down one line.
To enter special characters for cursor control, press the key; this changes

the form of the cursor to ‘‘__’’. Next, press an edit key, ; m

,or ire . After entering the special character, press the key
to return to the normal mode.

COLOR
PAL

’

6-24

PRINT USING

Format PRINT [<palette code >] USING “‘< format string >"; <data> [[3|<data>] aks

oI
Abbreviated Format

Explanation

? USI.

The PRINT USING statement displays data on the screen in a specific format. This

statement should be entered using the same format as the PRINT statement, except

for the specification of < format string >. < format string> consists of formatting

characters which specify the format in which data is to be displayed, as described

in the examples below.

(1) Formatting characters for numeric values

(a) #

A “‘sharp’’ symbol is used to represent each digit position. If the number

to be displayed has fewer digits than positions specified, the number will

be right-justified in the field.

10 A=123

20 PRINT USING ‘“# ###°°A

RUN

123

(b) .
A period indicates the position in which the decimal point is to be displayed.

The number of # signs to the right of the decimal point specifies the num-

ber of decimal places to be displayed.

10 A=12

20 PRINT USING “###.##°CA

RUN

12.00

(©),
A comma placed at every third # sign in the <format string> parameter

indicates the position in which a comma is to be displayed. Numbers will
be displayed right-justified.

10 A=6345123
20 PRINT USING ‘'#,## 4,8 ##'CA
RUN

6,345,123

6-25

(d) + and —

(e)

(p

(g)

A plus (+) or minus (—) sign may be included at the end of <format

string> to specify that the sign of the number is to be displayed in that

position instead of a space. For instance, PRINT USING ‘#4 # ##+475A

or PRINT USING “‘ # # # # —'’;A will cause the sign to be displayed im-

mediately after the number. (PRINT USING **# # # # —” causes a minus

sign to be displayed following the number if the number is negative; if the

number is positive, only a space is displayed in that position.) Furthermore,

a plus sign may be specified at the beginning of a format string to indicate

that the number’s sign is to be displayed in the position regardless of whether

it is positive or negative.

PRINT USING ““####+";-13

uu 13-
PRINT USING ‘+ # # # #25

wu +25

Note:

Although a minus sign will be displayed if one is specified at the beginning

of the format string, it will have no relationship to the sign of the number,

ae

Specifying a pair of asterisks at the beginning of the format string indi-

cates that asterisks are to be displayed in the positions of leading zeros.

10 A=123

20 PRINT USING "* * ### HA

RUN

** #123

££

Specifying a pair of pound signs at the beginning of the format string indi-

cates that a pound sign is to be displayed in the position immediately to
the left of the number.

10 A=123

20 PRINT USING "FEA A HHA

RUN

ww, £123

$$
Specifying a pair of dollar signs at the beginning of the format string indi-

cates that a dollar sign is to be displayed immediately to the left of the
number,

10 A=456
20 PRINT USING ‘“‘$S### #'CA
RUN

wits $456

6-26

(h) ttt

Four exponential operators may be included at the end of a format string

to control the display of numbers in exponential format.

10 A=51123

20 PRINT USING “##.# #ATTIT A

RUN

ws 5,112E+04

In this case, the first number sign is reserved for display of the sign of the

number.

(i) Extended list of operands

A list of variables may be specified following a single PRINT USING state-

ment by separating them from each others with commas or semicolons. When

this is done, the format specified in <format string> is used to display
all resulting values.

10 A=5.3: B=6.9: C=7.123

20 PRINT USING "##.4## #"; Fase

A,B,C
RUN

us 5.300 , 6.900 _, 7.123

The result is the same regardless of whether semicolons or commas are used

to separate variables.

(2) Formatting characters for string values

(a)!
An exclamation mark in < format string> specifies that only the first charac-

ter in the given string is to be displayed.

10 A$= “CDE”
20 PRINT USING ‘‘1'';A$
RUN
c

(b) & sk
Ampersands with n spaces between them specify that the first 2 +n charac-

ters in the specified string are to be displayed. If the string is shorter than

the field defined by <&_..4.,..&>, it will be left-justified in the field

and padded with spaces on the right. If the string is longer than the field,

the extra characters will be ignored.

10 A$="'ABCDEFGH”’

20 PRINT USING "8&4 .4.UU8'A$
RUN

ABCDEF

10 AS=""XY"
20 PRINT USING “&4.4.U8A$
RUN

XYuuw

6-27

G)

(4)

String constant output function

When any character other than those described above is included in the for-

mat string of a PRINT USING statement, that character is displayed together

with the value specified following the semicolon.

10 A=123

20 PRINT USING "'DATA# ###°"A

RUN

DATA .. 123

Separating the USING clause

Usually, the keywords PRINT and USING are specified adjacent to eath other;

however, it is possible to use them separately within the same statement.

10 A=-12: B=14.: C=12

20 PRINT A;B; USING ‘'# # # #'';C
RUN

-12 4 14 Wu 12

In the above example, line 20 consists of a normal PRINT statement and a

USING clause.

6-28

INPUT

Format

Explanat ion |

INPUT [<message > ;] < variable >[,<variable>] ...

Abbreviated Format

The INPUT statement reads data entered during program execution and assigns it

to <variable>.

When an INPUT statement is encountered during program execution, execution stops,

a question mark appears, and the cursor blinks to indicate that the program is wait-

ing for data. If <message> is specified, the message is displayed instead of the

question mark. After data is typed in from the keyboard and [CR] is pressed, the
data is assigned to < variable >, then program execution resumes. The types of the

data and <variable> must be the same. Character constants can be entered without

double quotes. In such cases, any leading or trailing spaces are ignored. However,

if leading or trailing spaces or commas are to be included in the constant, enclose

the entire character string in double quotes.

Example 10 INPUT A,B$ vo. Allows data to be entered and displays ?. When you

have entered the data, the program assigns the first

item to variable A and the second item to variable BS.
20 INPUT "A="; A........... Displays message ‘‘A="" and waits for data to be

typed in.

GET

Format GET <variable>

Explanation The GET statement checks whether any key on the keyboard is being pressed, and

if so, assigns the key value to the variable specified in <variable>. The variable

will be left empty (0 for a numeric variable or null for a string variable) if no keys
are pressed,

With numeric variables, this statement allows a single digit (from 0 to 9) to be en-

tered; with string variables, it allows a single character to be entered. Any non-numeric

value entered for a numeric variable will be ignored.

10 GET AS: IF AS="' '' THEN 10
20 PRINT A$
30 END

This program displays a character entered from the keyboard if the character is
printable.

6-29

DIM

Format

Explanation

Example

DIM <variable>(<subscript >)[,< variable >(<subscript>)] ...

DIM <variable>(<subscript >, <subscript >)[, < variable >(<subscript>,

<subscript>)] ...

The DIM statement declares arrays with from one to four dimensions and reserves

space in the memory for the number of dimensions declared (DIM: DIMENSION).

Up to two alphanumeric characters beginning with an uppercase character can be

specified for <variable> as the array name, and subscripts of any value may be

specified to define the size of dimensions; however, the number of dimensions which

can be used is limited in practice by the amount of free memory space available.

Different names must be used for each array which is declared; for example, the

declaration DIM A(5),A(6,3) is illegal. Execution of a DIM statement sets the values

of all elements of the declared arrays to 0 (for numeric arrays) or nulls (for string

arrays). Therefore, this statement should be executed before values are assigned to

arrays.
If the DIM statement is executed on an array which has previously been declared,

and if the newly declared dimensions are greater than the existing array, an error

results,

All array declarations are nullified by execution of a CLR statement or a NEW

statement.

TO DIM AlSD ccosnenvcarsnesaccees Declares 1-dimensional numeric array A with 4

elements.

3+1=4 elements

72009) Le) Declares 2-dimensional string array B with 12

elements.

BSG,2)
(2+1)x (3 +1)=12 elements

10 DIM A(2)
20 FOR J=0 TO 2
30 INPUT A(J)
40 NEXT J
50 PRINT A(O), Ail), A(2)
60 END

Three array variables (A(0), A(1), and A(2)) are used in this example. The program

inputs three numbers into these variables, then displays these numbers.

6-30

READ ~ DATA

Example

Format READ <variable>[,<variable>] ...

5
DATA <constant>[,<constant>] ...

Abbreviated Format

REA. ~DA.

Explanation Like the INPUT and GET statements, the READ statement is used to submit data
to the computer for processing. However, unlike the other two statements, data is

not entered from the keyboard, but is instead held in the program itself with DATA

statements. More specifically, the function of the READ statement is to read suc-

cessive items of data into variables from a list of values which follows a DATA

statement. When doing this, there must be a one-to-one correspondence between

the variables of the READ statements and the data items specified in the DATA

statements. Quotation marks can be omitted for string data in DATA statements.

However, they cannot be omitted for null strings and strings including spaces.

(Example 1)

10 READ A,B,C,D

20 PRINT A;B;C;D

30 END

40 DATA 10,100,50,60

RUN

10 100 50 60

In this example, the values specified in the DATA statement are read into variables

A, B, C, and D by the READ statement, then the values of those variables are dis-

played.

(Example 2)

10 READ X$,A1,Z$

20 PRINT X$;A1;Z$

30 END

40 DATA A,1,C

As shown by the example above, string data included in DATA statements does

not need to be enclosed in quotation marks.
RUN

A 1C

The READ statement in this example picks successive data items from the list specified

in the DATA statement, then substitutes each item into the corresponding variable

in the list following the READ statement.

6-31

See also

(Example 3)
10 DIM A(2)

20 READ A\0),A(1),A(2)
30 PRINT A(O);A(1);A(2)
40 END

50 DATA 3,4,5

RUN

345

The READ statement in this program substitutes the numeric values following the

DATA statement into array elements A(0), A(1), and A(2), then the PRINT state-

ment in line 30 displays the values of those array elements.

(Example 4)

10 READ A

20 READ B
30 DATA X

The example above is incorrect because firstly a numeric variable is specified by

the READ statement on line 10, but the value specified following the DATA state-

ment is a string value, and secondly there is no data which can be read by the READ

statement on line 20.

RESTORE

6-32

RESTORE

Format RESTORE [|<line number>|]

|<label> j

Explanation

Example

Abbreviated Format

RES.

When the RESTORE statement is executed with no line number or only a line num-

ber of 0 specified, it causes the BASIC interpreter (when READ statements are en-

countered) to read the lists of data items from the beginning of the DATA statement

with the smallest line number. If either <line number> or <label> is specified,

this statement causes the BASIC interpreter to start reading data items in the DATA

statement specified by the <line number> or <label> parameter or the subse-
quent DATA statement having the smallest line number.

10 DATA *’PERSONAL COMPUTER”

20 DATA ‘'MZ-800""

30 READ A$,B$
40 PRINT A$;B$
50 RESTORE 20

60 READ C$
70 PRINT C$

80 RESTORE

90 READ D$
100 PRINT D$
110 END
RUN
PERSONAL COMPUTER MZ-800

MZ-800

PERSONAL COMPUTER

READ~ DATA

6-33

DEF FN

Format

Explanation

Example

DEF FN <function name>(<variable>)= <numeric expression>

The DEF FN statement is used to define user function. Such functions consist of
combinations of functions which are intrinsic to BASIC. The <function name>
is an uppercase letter.

DEF FNA(X)=2*#X1t2+34#X+1..... Defines 2X? + 3X + 1 as FNA(X).

DEF FNE(V)=1/2*#M#V12......00.... Defines 1/2MV? as FNE(V).

(incorrect definitions)

10 DEF FNK(X) =SIN(X/3 + 4/4), FNL(X) = EXP(— Xt2/K)

aoaseeteneett Only one user function can be defined by a

single DEF FN statement.

10 DEF FND(X)=FNB(X)/C + X....... Any functions which have been defined with

DEF FN cannot be used in another DEF FN.

Find the kinetic energy of a mass of 5.5 kg when it is imparted with initial accelera-

tions of 3.5 m/s*, 3.5x2 m/s’, and 3.5x3 m/s.
10 DEF FNE(V)=1/2*M#*Vt2
20 M=5,5:V=3.5
30 PRINT FNE(V), FNE(V #2), FNE(V*3)
40 END

Note:

All user function definitions are cleared when the CLR or NEW statement is executed.

6-34

TRON

Format TRON[/P]

Abbreviated Format

TR.

Explanation The TRON command traces the execution of the program. Once a TRON command

is executed, line numbers of program lines are printed on the screen, enclosed in

brackets ([}), as they are executed by the BASIC interpreter. The /P option directs

the output of the TRON command to the printer.

Example 10 DEF FNA(X,Y)=X*Y

20 READ A1,A2,A3,A4
30 W=FNAIA1,A2):GOSUB 100
40 W=FNAIA2,A3):GOSUB 100
50 W=FNAIA3,A4):GOSUB 100
60 DATA 4,5,6,7
70 END
100 IF W>20 THEN PRINT''ABCD’*
110 RETURN

Enter TRON before running this program.

RUN

{10}(20][30}{100}[110}[40][100]ABCD
[110][50][100]/ABCD
{110}(601170)

Line numbers of program lines are printed as they are executed so you can keep

track of how program execution proceeds. To terminate tracing, enter the TROFF

command.

See also TROFF

TROFF

Format TROFF

Abbreviated Format

TROF.

Explanation The TROFF command disables the trace function.

See also TRON

6-35

DEF KEY

Format

Explanation

DEF KEY(<key number >) =‘‘<character string>"’

Character strings can be assigned to any of the ten function keys to allow the strings

to be entered at any time, simply by pressing a single definable function key.

Function key numbers | to 5 are entered just by pressing the corresponding func-

tion key at the top left corner of the keyboard, while keys 6 to 10 are entered by

pressing the SHIFT key together with the corresponding function key. The func-

tion key number (1 to 10) is specified in <key number>, and the string or com-

mand which is to be assigned to the key is specified in <character string> exactly

as you want it to appear. <character string> can be up to 15 characters long in-

cluding spaces.

Execution of the DEF KEY statement cancels any existing function key definition.

Example 10 DEF KEY(1)=‘‘SHARP”’..... .. Defines key [F1) as SHARP.

20 DEF KEY(2)="'RUN’’ +CHR$(13) Defines key [F2] as RUN [CR].

Note:

CHR3$(13) is the ASCII code for CR, which can be specified together with the string

assigned to a definable function key to the same effect as you actually press the
CR | key.

KEY LIST

Format KEY LIST

Abbreviated Format

Explanation

K.L.

The KEY LIST command displays a list of the character strings assigned to the defina-
ble function keys.

Example KEY LIST [cr]
DEF KEY(1)="RUN (ju. +CHR$(13)
DEF KEY(2)="LIST
DEF KEY(3)="AUTO .,””
DEF KEY(4)=""RENUM .,"
DEF KEY(5)="‘COLOR ..”"
DEF KEY(6)="*CHRS("”
DEF KEY(7)="DEF . KEY(”’
DEF KEY(8)="CONT”’
DEF KEY 9)="SAVE 4"
DEF KEY(10)= “LOAD V4.”
Ready

The list above shows the initial settings for the definable keys.

Note:

“*\ |” indicates a space.

6-36

INIT

Format

Explanation

(1) INIT ““RAM:[<number of bytes>]”’

(2) INIT “LPT: [M{ 0)] [, Sn] [, CR code]’’

1

2

(3) INIT “RS/1): <monitoring code>, <initialization code>[,<end code>]’’

(2)
(4) INIT “CRT:[M<mode>][,B< block code>]""

The INIT command defines the initial settings and modes for external devices.

(Format 1)

In this format the INIT command initializes the optional RAM file board (MZ-1R18)

and allocates the amount of memory space specified in <number of bytes> to this

file, with the remaining memory space reserved for the printer buffer. <number

of bytes> must be within the range $0010 to $FFFF. When <number of bytes>

is omitted, the current setting for the RAM file area is assumed, The ‘‘OK? [Y/N]’”

message appears when this command is executed. Typing Y sets up the RAM file

area as shown below. Typing N causes BASIC to display a ‘‘Break’’ message and

return to the command mode.
Either the RAM file board or the printer buffer function may become unavailable

if the memory space assigned to it is too small.

INIT "RAM: SFFFF'"

This statement initializes the RAM file board and allocates the maximum amount

of memory space to RAM files.

0 eS $0000
’ System area $000F System area

RAM file area RAM file area

eCrrr}
$D000

Printer buffer area

SFFFF

After INIT’*RAM:$FFFF”

has been executed.

6-37

(Format 2)
In this format the INIT command specifies the printer and the mode in which the
printer buffer is to be used.

[M] indicates the printer buffer mode.

MO: Direct mode (The buffer is initialized.)

MI: Spool mode (The buffer is initialized.)
M2: Direct mode (If the spool mode is active, this mode is entered after any exist-
ing contents of the buffer have been printed out.)

The M1 and M2 options are invalid if no RAM file board is installed,
An error will be generated if image print code OBH + 0BH’* is sent to the MZ-80P5(K)
printer in the spool mode. To recover from this type of error, reenter the desired
command after executing INIT “‘LPT: M2”, Printing can be stopped in the spool
mode by pressing the and [N] keys simultaneously.

* H indicates that the preceding number is in hexadecimal.

{S] specifies the printer type.

SO: MZ-1P16

Sl: MZ-80P5(K)

$2: Printer which converts print data into ASCII codes

$3: Code through

The following codes are converted as shown during execution of PRINT/P state-

ment when SO or SI is specified in the INIT statement.

CHRS ($11) or is converted to $09.
CHRS ($12) or i is converted to SOB.

CHRS ($15) or is converted to $OF.

CHR$ ($16) or is converted to $0C and $0A.

<CR code> must be specified when a code other than ODH is to be used as the
CR code.

INIT “LPT: M1, $1”

The above example specifies that part of the RAM file area is to be used as the
printer buffer and sets the printer buffer spool mode. The printer to be used is an
MZ-80P5(K).

* The printer buffer
When data is output to the printer, the computer waits until all data has been printed
before going on to do other processing. However, since the speed of data printout
is much slower than the computer's processing speed, the computer spends a great

amount of time simply waiting for the printer to become ready. However, if data can
be output to a special holding memory for temporary storage, and that memory will

automatically forward the data to the printer as it becomes ready, the computer will
not have to wait and can be used for other tasks while the printer is printing. Such
a special memory is referred to as a printer buffer.

With the MZ-800, part of the memory in the RAM file (MZ-IR18] option can be

used as a printer buffer. Printer buffer operation is enabled when MI (the spool mode)

is specified with format 2 of the INIT command, and is disabled when MO or M2
(the direct mode) is specified.

6-38

(Format 3)

In this format the INIT command sets up the RS-232C interface mode.

<Monitoring code> (High active)

Enables receive DCD monitoring.

Enables send DCD monitoring.
Enables send CTS monitoring.

Not used. Normally set to 0.
Enables send RTS OFF.

Enables send all characters monitoring.

< Initialization code> (High active)

Parity
00: No parity

01: Odd parity
10: No parity
11: Even parity

‘Number of stop bits
00: Not used.
01: 1 stop bit

10: 1+1/2 stop bits
11: 2 stop bits

‘Not used. Normally set to 0.

Length of receive or send characters

0: 7 bits/CHR
1: 8 bits/CHR

<End code>

A number from 0 to 255 ($00 - $FF)

When exchanging data between two MZ-800 units, prepare a cable connecting the

RS-232C terminals as shown below.

| Signal name | Pin number

Use both units in the terminal mode. (Refer to the manual for the RS-232C interface.)

6-39

<Flow chart>

6-40

The following programs transfer the contents of A$ between the two MZ-800s:

[Program for sender]

10 INIT’*RS1:$00,$8C”’

20 A$ =''0123456789"'

30 WOPEN #1,"’RS1:""

40 PRINT #1,A$

50 CLOSE#1

60 END

[Program for receiver]

10 INIT‘‘RS1:$00,$8C"'

20 ROPEN #2,'‘RS1:""

30 INPUT #2,A$

40 PRINT AS

50 CLOSE#2

60 END

(Format 4)

In this format the INIT command sets up the display settings. <mode> specifies

the resolution of the screen and the number of colours as follows.

Resolution [Characters per line| Colours

320 x 200 dots 40 4 colours

16 colours 320 x 200 dots

Foreground and back-
ground colours

640 x 200 dots | 4 colours

Mode

640 x 200 dots

Note:

Optional graphic memory (MZ-1R25) is required to set mode 2 or 4.

When a TV set is used as the display unit, sufficient resolution will not

be obtained in mode 3 or 4.

<block code> specifies the colour pallete block number.

See Appendix A for more information on display control.

BYE

Format BYE

Abbreviated Format

B.

Explanation The BYE command returns control of the computer from the BASIC interpreter

to the monitor program in RAM.

See chapter 8 for details of the monitor program.

BOOT

Format BOOT

Explanation

Example

The BOOT command initiates an initial program load (IPL). This command places

the computer into the same state as when the computer is first powered on.

BOOT 0000... ceescssssssss.. Reloads the system program into memory.

WAIT

Format

Explanation

Example

WAIT <numeric data>

Abbreviated Format

Ww.

The WAIT statement suspends program execution for the time specified in < numeric
data>. The time must be specified in milliseconds (1/1000 seconds).

WANT TOD rice eesainicniagnnnedes Suspends program execution for 0.1 (100/1000)

second.

6.3 File Control Statements

DIR

Format DIR[/P][RAM]

Explanation The DIR command displays the names of files on the RAM file board.

Specifying DIR/P sends the contents of the directory to the printer.

The optional MZ-1R18 RAM file board is required for this command to be valid.

RAM may be omitted when the RAM file board is specified in the DEFAULT state-

ment or it is logged as the default device.

The device specified in the DIR command becomes the default device.

Each filename is followed by one of the following three file types.

BTX: BASIC program files

BSD: BASIC sequential data files or program files written in ASCII format

OBJ: Machine-language files

Example DIR RAM.............0.....:..00.. Displays a directory of the RAM file board files.

See also DEFAULT

RUN

Format RUN [‘‘[<device name > :]<filename>"’[, { A a

\R

Abbreviated Format

R.

Explanation Erases the existing programs in the BASIC program area and clears the program

work area, then loads the program specified with < filename > into the BASIC pro-

gram area from the device indicated with <device name>. Then, this command

executes the program from its beginning.

<device name> may be omitted when the default device or the device specified

in the DEFAULT statement is to be used. When all parameters are omitted, this
command does not erase the program in the BASIC program area.

To load and execute a program which has been saved in the form of BSD file writ-

ten in ASCII codes, specify the A option.

Specifying the R option makes it possible to load an OBJ file in the same manner

as IPL.

The file types which can be loaded are BTX, BSD and OBJ.

RUN "CMT:PROG":-.0-0+- Loads BTX file “PROG” from the cassette
tape and executes it.

RUN “'CMT:DATA”’A............. Loads BSD file ‘‘DATA”’ from the cassette

tape and executes it.

LOAD

Format

Explanation

Example

LOAD ‘‘[<device name> :]<filename>"’ [,A]

Abbreviated Format

LO.

The LOAD command loads a specified program into memory from an external

storage device.

<filename> must have the same name as when the file was first saved. This

parameter is mandatory. <device name> must be CMT or RAM, This parameter

may be omitted when the default device or the device specified in the DEFAULT

statement is to be used. Add the A option when loading a program file which is
saved in ASCII format. Note that reading ASCII format files takes more time than

binary format files.

Only BASIC text files and machine language programs can be loaded with this com-

mand. When the file to be loaded is a BASIC text file, the current program is cleared

from the BASIC text area when the new program is loaded.

Note:

When loading a machine language routine to be linked with a BASIC program, the

LIMIT statement must be executed to reserve an area in memory for the machine

language program. Further, the applicable machine language program file is executed

as soon as loading is completed if the loading address is inside that area. (In this

case, the BASIC text is not erased.)

The LOAD command can be used within a program to load a machine language

program file.

LOAD *‘CMT:HELLO”’ Loads a file named ‘‘HELLO’’ from the data

recorder.

Procedure for loading a program file

SPLAY

Press the [PLAY] button

+
Found *’<filename>“’

+
Loading ‘*<filename>“"

+
Ready

Screen display

Data recorder operation

Scréen display (the names of program files found are displayed.)

Screen display

Screen display

SAVE

Format

Explanation

Example

SAVE ‘‘[<device name>:] <filename>”’ [,A]

<device name> must be CMT or RAM.

Abbreviated Format

SA.

The SAVE command assigns a file name to the BASIC program in the computer’s

memory and saves it onto an external storage device.

The <device name: > parameter can be omitted when specifying a device that has

already been specified in a DEFAULT statement, or is the current default device.

The <filename> parameter is required and must always be specified.

The SAVE command saves the BASIC program text in the ASCII format if the

<A> option is specified. In this case, the BASIC interpreter attaches BSD to the

file name as the file type. The types of the files that can be saved with the SAVE

command are BTX and BSD.

SAVE “'CMT:PROG" Saves the program in memory on cassette tape with

a file name of ‘“‘PROG’’. The file type of the saved

program is assumed to be BTX.

SAVE ‘'CMT:DEMO",A....... Saves the program in memory on cassette tape in AS-

CII format with a file name of ‘‘DEMO”’. The file
type of the saved program is assumed to be BSD.

Note:

The SAVE command saves only the BASIC program text (i.e., the program text

displayed by executing the LIST command); it does not save any machine language

program in the machine language area.

When using SAVE, make a note of the tape counter reading for future reference.

Procedure for saving a program file

SAVE"CMT: <filename> [CR| Key in

—— Screen display

Press the i button. Data recorder operation

—— Screen display

ha Screen display

6-46

VERIFY

Format VERIFY ‘‘(CMT]: <filename>”’

Abbreviated Format

Explanation

Example

Vv.

The VERIFY command compares the program in memory with the program writ-

ten on cassette to confirm that the program has been properly saved. ‘*Ready”’ is

displayed if both programs are the same and ‘*CMT:IIlegal data error’’ is displayed

if they are different. In the latter case, save the program again.

Any ASCII file cannot be verified.

This command is valid only for cassette files.

VERIFY ''CMT:NAME"’........ Compares file NAME” on the cassette with the pro-

gram in memory.

Procedure for verifying a program file

VERIFY “'<filename>" (CR) Key in

APLAY ‘Screen display

Press the [PLAY | button. Data recorder operation

+

Found *'<filename>"’ Screen display (the names of program files found are displayed.)

Screen display

Ready Screen display

Verity An error is detected.
completed. If this message is displayed, retry to save the program file again.

6-47

DELETE

Format DELETE “‘[RAM:] <filename>"’

Abbreviated Format
D.

Explanation The DELETE command deletes the file specified in <filename>. The optional

MZ-1IR18 RAM file board is required for this command to be valid.

Example DELETE '‘RAM: SAMPLE’’... Deletes a file named “SAMPLE” on the RAM file
board.

RENAME

Format RENAME ‘“‘[RAM:] <old filename>”’, ‘‘<new filename>"’

Abbreviated Format
RENA.

Explanation The RENAME command renames a given file. To rename a file, specify the old

and new file names in that order. An error will occur if the new file name specified

matches that of an existing file on the RAM file board.

RAM may be omitted if the RAM file board is set as the default device or has al-

ready been specified in a DEFAULT statement. The optional MZ-1R18 RAM file

board is required for the RENAME command to be valid.

RENAME “‘RAM: OLDPROG”, ‘NEWPROG’’
This example changes the name of a file on the RAM file board from ‘‘OLDPROG”’

to “NEWPROG”.

CHAIN

Format

Explanation

CHAIN ‘‘[<device name>:] <filename>”’

<device name> must be CMT or RAM.

Abbreviated Format

CH.

The CHAIN statement transfers execution from the current program to another

program in a file. The CHAIN statement can also open a file. Executing a CHAIN

statement has the same effect as executing the RUN command in a program except

that CHAIN passes variables and arrays from the current program to the called

program.
<device name> may be omitted when the default device or the device specified

in the DEFAULT statement is to be used.

10 A=1

20 B=2

30 CHAIN ‘‘CMT:PROG”’

40 END

In this sample program, control is passed on line 30 to the program, from file

“‘PROG”’ on the cassette. The values of variables A and B, 1 and 2, are passed

to the called program.

6-49

MERGE

Format MERGE [‘‘[<device name>:] <filename>’’][,A]
<device name> must be CMT or RAM.

Abbreviated Format

Explanation

Example

M.

The MERGE command merges the program specified in the <filename> into the

program currently in memory.

<device name> may be omitted when the default device or the device specified

in the DEFAULT statement is to be used.

If lines from the file have the same line numbers as those in the program in memory,

the lines from the file overwrite the corresponding lines in memory.

To merge a BSD file (program) saved in ASCII format, add the A option at the

end of the statement.

(Program in memory) (Program on cassette tape)

“PROG”

10 B=2 10 A=1
30 PRINT B 20 PRINT A

50 END 40 END

When these programs are merged together with the MERGE ‘CMT: PROG” state-

ment, the merged program will look like this:

10 A=1

20 PRINT A

30 PRINT B

40 END

50 END

Confirm the resulting program by using the LIST command,

6-50

WOPEN #

Format WOPEN # <logical number>, ‘‘[<device name>:] <filename>”’
<logical number> must be an integer from 1 to 127.

<device name> must be CMT, RAM, or RSn.

Abbreviated Format

Explanation

Example

See also

wo. #

The WOPEN # statement opens a BSD file for output. It also assigns a logical number

and name to the file.

<device name> may be omitted when the default device or the device specified

in the DEFAULT statement is to be used. Specifying RSn as < device name> causes

output to be sent to the RS-232C device.

10 WOPEN #1, ‘‘CMT:DATA”’.... Opens a file under the name ‘‘DATA”’ for out-

put and assigns logical number | to that file.

.. After this statement is executed, all output from
PRINT #1 statements is sent to the RS-232C
port.

10 WOPEN #1, ‘‘RS1:"'

10 WOPEN #2, ‘‘DATA’’
20 FOR Z=1 TO 99

30 PRINT #2, Z

40 NEXT Z
50 CLOSE #2
60 END

The above sample program writes numbers 1 to 99 into the specified file.

PRINT #, ROPEN #, CLOSE #

PRINT #

Format PRINT# <logical number>, <data> [, <data>] ...

Abbreviated Format

Explanation

Example

See also

24

The PRINT # statement writes data sequentially to the file that is opened for out-

put with a WOPEN # statement.

<logical number> must be the file number used in the WOPEN# statement.

<data> may be numeric or alphanumeric.

10 WOPEN #1, ““CMT:DATA2"
20 PRINT#1, 1, 2,3

30 CLOSE#1
40 END

This sample program writes numeric data 1, 2, and 3 into file ‘‘DATA’’. The file

has the logical number 1 and is opened for output.

WOPEN #, CLOSE #

6-51

ROPEN #

Format ROPEN # <logical number>, ‘‘[<device name>:] <filename>”’

<logical number> must be an integer from 1 to 127.
<device name> must be CMT, RAM, or RSn.

Abbreviated Format

Explanation

Example

RO. #

The ROPEN # statement opens a file for input. The ROPEN # statement assigns

<logical number> to the file designated by <device name> and <filename>.

<device name> may be omitted when the default device or the device specified

in the DEFAULT statement is to be used. ‘“‘RSn:’’ specified in <device name>

designates the RS-232C interface as the input device from which data is to be read.

10 ROPEN #1, “‘CMT: DATA’’.... Opens a BSD file named ‘DATA’? on the
cassette,

TO!ROPEN #1, “RSG ccaccccccasas Sets the RS-232C port as the device from which

all data specified in the INPUT #1 statements

is to be read.

10 ROPEN #2, ‘‘DATA”’
20 FOR Z=1 T0 99

30 INPUT #2,A
40 PRINT A
50 NEXT Z
60 CLOSE #2
70 END

The above program reads and displays the contents of the file created by the sam-

ple program given for the WOPEN # statement.

INPUT #, WOPEN #, CLOSE #

6-52

INPUT #

Format INPUT # <logical number>, <variable> [, <variable>] ...

Abbreviated Format

Explanation

Example

See also

l.#

The INPUT # statement sequentially reads data items from the file opened for in-

put with the ROPEN # statement and assigns them to program variables. <variable>

may be an array element. <logical number > is the same number used as when the

file was first opened for input by the ROPEN # statement.

As with the READ ~ DATA statement pair, an error may be generated if data

and variable types disagree. The end of file can be tested by using the EOF # func-

tion if the specified file is on the RAM file board.

10 ROPEN #2, ““DATA2"

20 INPUT #2, A, B, C

30 PRINT A, B, C

40 CLOSE #2

50 END

This sample program reads numeric data from the file opened for input under logi-

cal number 2 and assigns the data to numeric variables A, B, and C.

ROPEN#, CLOSE #, EOF #

EOF(#)

Format

Explanation

Example

See also

EOF(# <logical number>)

Abbreviated Format

EO. #

The EOF(#) function is used to find the end of a file. This function signals an end-

of-file condition when all data in the file has been read. The value — 1 (true) is returned

after the end of the file is encountered. EOF(#) is invalid when reading data from
CMT.

The EOF(#) function is generally used with the IF statement and placed after an
INPUT # statement.

10 ROPEN #3, “DATA”
20 INPUT #3, A
30 IF EOF(#3) THEN END
40 PRINT A
50 GOTO 20

The above program reads data items sequentially from the file named ““DATA”’

and displays them on the screen until the end of the file is encountered.

INPUT #

6-53

CLOSE #

CLOSE| # < logical number >]

Abbreviated Format

CLO. #

The CLOSE statement closes the file opened under the specified logical number.

The logical number assigned to the file is released after execution of the CLOSE
statement.

A CLOSE operation on a file opened for output causes the output buffer to be

flushed. A CLOSE operation with no logical number specified closes all open files
and releases all logical numbers.

10 CLOSE #1

10 CLOSE...

WOPEN #, ROPEN#

... Closes the file existing as logical number 1.

... Closes all open files.

ad rc 5 =

Format

Explanation

Example

See also

KILL[# <logical number>]

Abbreviated Format

KI. #

The KILL # command aborts the writing of data into the file opened under the speci-

fied logical number. A KILL # command with no logical number aborts all current
writing processing, closes all open files, and releases the logical numbers.

UES oes csnoiewuvenaygyannnsnats Aborts the writing of data to the file opened under

logical number 3 and releases the logical numbers as-

signed to that file.

WOPEN#, PRINT#

6-54

DEFAULT

Format DEFAULT “‘<device name>: ”

Abbreviated Format

Explanation

Example

DEF.

The DEFAULT statement defines the device names to be assumed when the < device

name> parameter is omitted in input/output statements.

— Specify device names as follows:

Data recorder (Default)

++» RAM file board
. Printer

RAM.

LPL

RS | | viens RS-232C interfaces
2

DEFAULT ‘'CMT: *

After this statement is executed, the data recorder becomes the default device
whenever the < device name> parameter is omitted in input/output statements for

external devices.

6-55

6.4 Graphics Control Statements

COLOR

Format

Explanation

COLOR [<palette code> [,<mode>]

Abbreviated Format

COL.

The COLOR statement specifies the < palette code> and optional <mode> that

are used by the PRINT, PRINT USING, and graphics statements SET, RESET,

LINE, BLINE, BOX, CIRCLE, PAINT, PATTERN, and SYMBOL.

<mode> specifies the type of logical operation performed on the colours. When

<mode > is specified as 0, the old colours in superimposed sections are over-painted

by new colours. When this parameter is specified as 1, the old and new colours are

logically ORed. The mode parameter does not apply however to the RESET and

BLINE statements (see Appendix A).

10 INIT “CRT:M1”

20 COLOR 3,0

30 FOR J=0 TO 10 STEP 2

40 SET 100,J

50 NEXT J

60 END

This program plots dots at points (100, 0) and (100,2) through (100,10) in colours

associated with palette code 3 and in superimpose mode 0.

Appendix A.

6-56

PAL

Format

Explanation

PAL <palette code>,<colour code>

The PAL statement matches a palette code and colour codes to each other. Both

the palette and colour code parameters can have a value from 0 to 15. In colour

modes other than the 16-colour mode, the user can select two or four palette codes

at a time and can select 16 colours. In the 16-colour mode, the user can set up a

palette block with the INIT command and select four palettes for that block, again

enabling selection of 16 colours. The default (initial) values of the palette and colour

codes are given below.

(1) 2-colour mode

Palette code Colour code

0 0 Black

1 15 Light white

(2) 4-colour mode

The table below shows the relationship between the palette and colour codes

that is established when BASIC is started.

Palette code Colour code

0 0 Black

1 1 Blue

2 2 Red

3 15 Light white

You can select four colour codes out of a possible 16 colour codes.

(3) 16-colour mode

The default palette code values are identical to those in colour mode. In this

mode, colours are fixed for each palette block (see the ‘“‘INIT Statement’’ for
palette blocks).

n: Palette block number

{ n_ |Colour code | Colour n_ |Colour code Colour

0 0 Black 2 8 Grey

1 Blue 9 Light blue

2 Red 10 Light red

3 Magenta 1 Light magenta

1 4 Green as 12 Light green

iS Cyan 13 Light cyan

6 Yellow 14 Light yellow

7 White 15 Light white

Note:

When a palette block is changed with the INIT statement in the 16-colour mode,

the palette code settings are initialized. See Appendix A for details of colour codes

and pallette codes.

6-57

SET

Format

Explan:

SET [<colour specification>] <X-coordinate >, < Y-coordinate >

<colour specification> = [<palette code>][,<mode>]

The SET statement sets a dot on the screen at the point specified by < X-coordinate >

and <Y-coordinate> in the specified colour. <X-coordinate> and <Y-

coordinate > are numerical expressions (i.e., numeric constants, variables, or ex-

pressions). They can have values from the following ranges:

— 16384 = <X-coordinate> =< 16383

~ 16384 = <Y-coordinate> < 16383

(= 16384, — 16384)

Example

See also

Virtual area

{-X) (639,0)
” Ys

Pome (639,199)

(16383, 16383)

Although you can specify X- and Y-coordinates in the virtual area, BASIC displays

only the shaded area in the above figure. <palette code> can specify the colour

of the dot to be plotted. <mode> must be either 0 or 1. When 0 is specified, the

dot is displayed in the colour specified by < palette code>, irrespective of the cur-

rent palette code value. When 1 is specified, the dot is displayed in the colour deter-

mined by ORing the current palette code with the <palette code> specified in the

SET statement.

When <colour specification> is omitted, the dot is displayed in the colour speci-

fied by the last COLOR statement.

10 SET[3,0] 100,50........... Turns on a dot at coordinates (100,50) in the colour

associated with the palette code 3, superimpose mode

0.

RESET

6-58

RESET

See also

RESET [<colour specification >] <X-coordinate >, < Y-coordinate>

<colour specification> = <palette code>,<superimpose mode>

The RESET statement changes the colour of a dot on the screen at the point speci-

fied by <X-coordinate> and <Y-coordinate> according to the rule shown be-

low. <X-coordinate> and < Y-coordinate> are numerical expressions (i.e., numeric

constants, variables, or expressions). They can have values in the following ranges:

~ 16384 < <X-coordinate> <16383

— 16384 = <Y-coordinate> = 16383

Their range of values is the same as that for the SET statement. <palette code>

specifies the palette code for the colour of the dot to be reset. <mode> must be

either 0 or 1. See Appendix A for more information.

SET

6-59

LINE

Format

Explanation

LINE [<colour specification>] <X-coordinate>, <Y-coordinate>,

<X-coordinate>, <Y-coordinate> [,<X-coordinate>, <Y-coordinate>] ...

<colour specification> = [<palette code>][,<mode>]

The LINE statement draws line(s) connecting given points in the specified colour.

<X-coordinate> and <Y-coordinate> are numerical expressions (i.e., numeric

constants, variables, or expressions). Their range of values is the same as that for

the SET statement. The <colour specification> parameter is identical to that of

the SET statement. If this parameter is omitted, the colour specification made in

the COLOR statement is assumed. If coordinates outside the display area are speci-

fied, the line is clipped off at the boundary of the display area,

10 LINE [2,0]10,20,260,180,380,60

20 END

The above program draws lines that connect from points (10,20), (260,180), to (380,

60) in the colour previously specified from palette code 2 in superimpose mode 0.

10 INIT’;CRT:M1"
20 FOR X1=0 TO 319 STEP 3

30 LINE 159,99,X1,0
40 NEXT X1

50 FOR Y1=0 TO 199 STEP 3
60 LINE 159,99,319,Y1
70 NEXT Y1

80 FOR X2=319 TO O STEP -3
90 LINE 159,99,X2,199
100 NEXT X2
110 FOR Y2=199 TO 0 STEP -3

120 LINE 159,99,0,¥2

130 NEXT Y2
140 END

The above program draws dotted lines (every three dots) from the center of the screen

(159,99) to the corners of the screen.

BLINE, SET

6-60

BLINE

Format

Explanation

See also

BLINE [<colour specification>] <X-coordinate>, <Y-coordinate>,

<X-coordinate>, <Y-coordinate> [,<X-coordinate>, <Y-coordinate>]...

<colour specification> = <palette code>,<superimpose mode>

The BLINE statement changes the colour of line(s) connecting given points on the

screen according to the rule shown below. < X-coordinate> and < Y-coordinate >

are numerical expressions (i.e., numeric constants, variables, or expressions), Their

range of values is the same as that for the SET statement. The <colour specifica-

tion> parameter is identical to that of the RESET statement. If this parameter is
omitted, the colour specification made in the COLOR statement is assumed. If coor-

dinates outside the display area are specified, only the line segment within the dis-

play area is deleted. See Appendix A for more information.

LINE, RESET

BOX

Format

Explanation

Example

BOX [<colour specification>] <X-coordinate 1>, <Y-coordinate 1>,

<X-coordinate 2>, <Y-coordinate 2> [,<palette code>]

<colour specification> = [<palette code>][,<superimpose mode>]

The BOX statement uses two pairs of coordinates as the location of the opposing

corners of the box. <X-coordinate> and < Y-coordinate> are numerical expres-

sions. Their range of values is the same as that for the SET statement.

The <colour specification> parameter is identical to that of the SET statement.

If this parameter is omitted, the colour specification mode in the COLOR state-

ment is assumed.

The last <palette code> parameter specifies that the box must be painted in the

specified colour. When this parameter is omitted, only the borders are drawn.

10 INIT’'CRT:M1""

20 CLS

30 BOX [2,0]20,20,60,60,2
40 END

This program draws a rectangle on the screen and paints it in colour previously speci-
fied from palette 2.

SET

CIRCLE

Format

Explanation

Example

CIRCLE [<colour specification>] <X-coordinate>, <Y-coordinate>,

<radius> [,[<aspect>] [,<start>,<end>][,O]]
<colour specification> = [<palette code>)[,<superimpose mode>]

Abbreviated Format
Cl.

The CIRCLE statement draws an ellipse (circle) or arc (fan). The meanings cf the

<colour specification > parameter are identical to those of the SET statement. When

this parameter is omitted, the values specified by the COLOR statement are assumed.

<X-coordinate> and <Y-coordinate> give the coordinates of the center of the

circle and <radius> the radius of the circle. Their ranges of values are as follows:

~ 16384 = <coordinates> < 16383

0s <radius> < 16383

The area in which the circle can be actually displayed is determined by the INIT

command,

<aspect> affects the ratio of the X-radius to the Y-radius. When <aspect> is

less than 1, the <radius> specified becomes the X-radius. If aspect is greater than

1, then <radius> becomes the Y-radius. The default value of <aspect> is 1.

The <start> and <end> angle parameters specify where drawing of an ellipse

is to begin and end. These parameters must be given in radians. When omitted, an

ellipse (circle) is drawn. When the O parameter is specified with <start> and

<end>, a fan is drawn, that is, an arc is connected to the center point with lines.

When O is omitted, an arc only is drawn.

10 INIT’;CRT:M1”
20 CIRCLE[1,0]100, 100,80,0.5
30 GOSUB 80
40 CIRCLE([2,0]50,130,60,0.5,0,4/4,0
50 GOSUB 80
60 CIRCLE 159,99,50
70 END
80 GET AS:IF AS="' ’ THEN 80
90 RETURN

The above program draws an ellipse, and, if any key is pressed, it draws an arc,

then a circle.

SET, GET

6-62

PAINT

Format

Explanation

PAINT [<palette code>] <X-coordinate>, <Y-coordinate>,
<boundary colour> [,<boundary colour>] ...

The PAINT statement fills in an area on the screen with the colour specified by
<palette code>.

When <palette code> is omitted, the palette specified in the COLOR statement

is assumed.

You can select the < boundary colour> from 16 colours. The range of values that

<X-coordinate> and <Y-coordinate> can have is determined by the INIT
statement.

Unless the area is completely surrounded by the specified border colour (called the

closed loop state), painting will occur beyond that area. Painting will be suppressed

if the specified X- and Y-coordinates lie on the border or in an area that has already

been painted with the specified colour.

Figures are all drawn in dots, so when lines and curves are drawn in a small area,

small closed loops may result. When this happens, painting will not occur unless
coordinates falling inside the closed loop are specified.

10 INIT’'CRT:M1""

20 CLS

30 CIRCLE[2]160,100,50

40 PAINT[1]160,100,2
50 END

The above program paints the area surrounded by a border using palette code 2

with a colour specified by palette code 1, starting at point (160,100).

6-63

PATTERN

Format

Explanation

Example

PATTERN [<colour specification >]<numeric data>, <text data>

<colour specification> = [<palette code>][,<superimpose mode>]

The PATTERN statement defines a graphics pattern in the specified colour. The

meanings of the <colour specification > parameter are identical to those of the SET

statement. When this parameter is omitted, the parameters in the COLOR state-

ment are assumed,

The pattern to be drawn can be specified using <numeric data> and <text data>.

<numeric data> (+1 to +24) represents the number of stacked 8-bit dot pattern

rows, and <text data> represents the individual dot pattern rows.

Drawing of the pattern is controlled by the position pointer. The number of dot

pattern rows specified by <numeric data> are displayed from bottom to top if

<numeric data> is positive and from top to bottom if it is negative. After the speci-

fied number of dot pattern rows are drawn, dot pattern lines 8 bits (1 character)

to the right of the current column are displayed. <text data> must be specified

using ASCII codes which correspond to the binary representation of dot pattern rows.

(Binary number) On BI S-T tT

5 7 ~+ 57 (hexadecimal)

~+* CHR$($57) or “W""

10 POSITION 100,100.. Sets up the position pointer.

20 PATTERNI2,016,’’ABCDEF’’

30 END

The above program draws the graphics pattern shown below in a colour from palette

2.

Binary Hexadecimal
‘or Character representation

701000110 +46 +"F"
01000901 4s rE?

701000100 +44 + "Dp"

-01000011 +43 +"C"
701000010 ~42 ~"B"

-01000001 -41 —"A"

Position pointer before execution

Line 20 above can be replaced by the following line:

20 PATTERNI2,0]6,CHR$($41,$42,$43,$44,$45,$46)

POSITION

POSITION

Format POSITION <X-coordinate>,< Y-coordinate>

Abbreviated Format

Explanation

Example

POS.

The POSITION statement sets the position pointer to a given point on the screen.

The position pointer points to the position on the screen where the dot pattern speci-

fied in a subsequent PATTERN statement is to be displayed. The range of values

of the <X-coordinate> and <Y-coordinate> parameters is the same as that of

the SET statement.

10 POSITION 100,50
20 A$ ="'ABCDEFGH”’

30 PATTERNI1,0]—8,A$
40 END

The POSITION statement on line 10 sets the position pointer to (100,50) where ex-

ecution of the subsequent PATTERN statement begins.

PATTERN

6-65

SYMBOL

SYMBOL [<colour specification>] <X-coordinate>,< Y-coordinate>,

<text data>[,<horizontal magnification >]*[, < vertical magnification >]*

[,<angle code>]

<colour specification> = [<palette code>][,<superimpose mode>]

Abbreviated Format

Example

SY.

The SYMBOL statement draws a graphics pattern of a given size at a given angle.

When this statement is encountered, BASIC positions the lower left corner of the

graphics pattern represented by <text data> at point (X-coordinate, Y-coordinate),

rotated by <angle code>, and magnified by a factor of <horizontal magnifica-

tion> and/or <vertical magnification>.

The meanings of the <colour specification> parameter are identical to those of

the SET statement. When this parameter is omitted, the parameters in the COLOR

statement are assumed.

The range of values that < X-coordinate> and < Y-coordinate> can have is iden-

tical to that specified in the SET statement. <horizontal magnification> and

<vertical magnification> are integers from 1 to 255 and default to 1.

When <angle code> is specified, the pattern is rotated counterclockwise with respect

to the upper left corner of the pattern at point (X-coordinate, Y-coordinate) by the

angle specified by <angle code>. The reference position of the pattern remains

unchanged after the rotation. The relationship between angle codes and angles is

given below.

Angle code | Angle Rennes bir 0"
0° | Defauit)

90°

180°
270°

(XY)

10 SYMBOL [1] 40,0, **MZ-800"', 5,5,0
20 FOR J=1T03

30 SYMBOL [J] J*80,100, ‘A’ J+2,J+2,J
40 NEXT J

50 SYMBOL [1] 280,199, ‘‘MZ-800"’, 5,5,2

POINT

Format

Explanation

Example

POINT (<X-coordinate> ,< Y-coordinate >)

The POINT function returns the palette code that is defined at the given point on

the screen. The range of values that <X-coordinate> and <Y-coordinate> can

have is set by the INIT statement.

10 INIT’‘CRT:M1”
20 SET[3,0]100,100
30 A=POINT(100,100)
40 PRINT A
50 END
RUN
3
Ready

The statement on line 10 assigns the point (100,100) to palette code 3. The POINT

function therefore returns a palette code of 3.

6.5 Music Control Statements

MUSIC

Format MUSIC <notel of melody! >[;<notel of melody2>]

[;<notel of melody3>][,<note2 of melodyl >]

[;<note2 of melody2>][;<note2 of melody3>] ...

Abbreviated Format

Explanation

MU.

The MUSIC statement generates through the MZ-800 speaker the melody or sound

effects specified by the character string or string variable of its argument.

Three parts of a melody can be played at the same time. In the melody specification

that follows the keyword MUSIC, where a melody is a sequence of ngtes, semico-

lons are used to separate individual parts, and commas are used to separate one

melody from another. Each note is specified as follows:

(i)

<octave specification> <note name> <duration>

Octave specification

The basic octave of a melody is specified in the format ‘‘On’’ where n is a number

in the range 0 to 6. The plus sign (+) makes the following notes played one

octave higher than the basic octave, while the minus sign (—) causes notes to

be played one octave lower. If neither sign is specified, the basic octave is as-

sumed. Plus and minus signs are illegal in a melody in which the basic octave

is set to O06 and O0, respectively.

(ii) Note specification

The symbols used to specify notes within each octave are as follows:

CDEFGAB#R

The relationship between the 8-note scale (do, re, mi, fa, so, la, ti, do) and

these symbols are shown below. The sharp symbol (#) is used to raise a note

by a half step. A note can be lowered a half step by attaching a # symbol to

a note one step lower than that desired. For example, B flat is represented as

#A, Silent intervals are specified with ‘*R’’.

uu
| I

Cc

re |mi| fa ti

| | |
OJE FJG/A|B

#C2#D HF eGFAa R— Rest

6-68

(iii) Duration specification
The duration specification determines the length of the specified note. Dura-

tions from 1/32 to 1 are specified as numbers from 0 to 9 as shown below.

(When R is specified, the length of the silent interval is determined.)

7; F FF # ” } meme
Dotted Dotted Dotted Dotted W32rest Wrest Freres: WErest yraresr W4rest yates: W2eest yro reg, Whole rest

Pode dad 1 Ds
tted Dotted Dotted Dotted 1/32 note 1/16 note 1/16 note 1/8 note 1/8 note 1/4 note 1/4 note 1/2 note 1/2 note Whole note

° 4 2 3 4 S 6 7 8 9

The following program plays ‘Oh! Susanna’’, composed by Stephen Foster:

10 TEMPO 6
20 A1$ ="'02G1A1B3 + D3 + D3 + E3 + D3B3G4A 1B3B3A3G3A6G1A1B3 +

D3 + D3 + E3 + D3B3G4A1B3B3A3A3G6R3"
30 A2$ =''G1A1G3B3B3 + C3B3G3G4G 1G3G3G3G3E6G 1A1G3B3B3 +

C3B3G3G4G1G3G3E3E3G6R3""

40 MUSIC A1$;A2$
50 END

The following options can be defined in the <melody> specification:

n=integer Default ry
value value Desceos

On O0to6 2 Sets the current octave. The frequency of A is |
440Hz if n=2.

Nn 0 to 83 Specifies the note directly through the cor-
responding note number rather than through thi

octave number and note name. The values of n
are listed in the table on the following page.
Values NO to N8 means rest.

—-
Tn lto7 4 Sets the tempo in the same way as the TEMPO

statement.

Vn 0 to 15 15 Sets the sound volume, The volume is maxi-
mum when n=15 and no sound is generated

4 when n=0.

Sn 0to7 8 Sets the envelope pattern (sound waveform).
For the values of n, see the figures for enve-

I lopes on the following page.

Mn 1 to 255 255 Always used with the S parameter to specify the

rate at which the envelope pattern is to change.
1 =approx. The rate is maximum when n= 1 and decreases.

10m/s The slope of the envelope becomes slower as the
value of n increases. Values of Mn which are
too large may generate inaudible sound depend-

ing on the envelope pattern.

Ln 0to9 5 Sets the length of the note. |

Note numbers (Nn)

Octave
0 1 2 3 4 5 6

Note

do

do#

Envelope patterns (Sn)

Envelope pattern

n (x-axis represents time;

y-axis represents volume.)

és

dade

x-axis represents time in the units specified in Mn.

The MUSIC statement causes music data to be buffered and the sounds to be gener-

ated independently of computer processing. This makes it possible to change the

display on the screen while playing music. However, this function also prevents the

music from being stopped with the and keys or being played out
to the display. The following commands are provided to control the starting and

stopping of musical sound:

MUSIC STOP: Stops sound generation.

MUSIC WAIT: Suspends program execution until the entire series of notes have

been played.

MUSIC INIT: _ Initializes the music and noise setting to ““O2V1SLST4S8M255””.

(See the table on the previous page.)

6-70

TEMPO

Format TEMPO <numeric expression >

Abbreviated Format
TE:

Explanation The TEMPO statement sets the tempo with which music is played by the MUSIC

statement. The setting for tempo may range from | to 7. The default setting is 4.

TEMPO 1: Slowest tempo,
TEMPO 4: Medium tempo,

TEMPO 7: Fastest tempo

SOUND

Format SOUND <pitch>,<duration>

Explanation

SOUND = (<register>,<data>)

Abbreviated Format

so.

The SOUND statement generates sounds as specified by <pitch> and <duration>.

(i) <pitch>

<pitch> specifies the pitch of the sound. The pitch codes and the corresponding

musical notes are listed in the table below.

ti 11 | 23 | 35 | 47 | 59 | 71 | 83

The frequency of note la in octave 2 is 440 Hz.

6-71

(ii) <duration>

<duration> specifies in units of 1/100 seconds the length of the tone generat-

ed by this statement. <duration> must be a numeric expression from 0 to 65535.

The SOUND = (<register>,<data>) statement is used to directly control

the sound generator (Programmable Sound Generator) LSI. The PSG can gener-

ate three tones and one noise. The PSG register table is shown below.

hiss ra Data

0 Tone 0 Frequency Integer from 1 to 2'° — 1

1 Tone 0 Volume Integer from 0 to 15 (see note)

2 Tone | Frequency Same as register 0

3 Tone 1 Volume Same as register 1

4 Tone 2 Frequency Same as register 0

5 Tone 2 Volume Same as register |

6 Noise Frequency Noise data

7 Noise Volume Same as register 1

The PSG can generate either synchronous or white noise. The type of noise

to be generated can be specified by sending 1-byte of data to PSG port $F2.

See Appendix B for control of PSG.

NOISE

Abbreviated Format

NO.

<melody>

Format NOISE <melody>[,<melody>]...

6-72

+ .
{ x <note name>[<duration>]

Explanation The NOISE statement generates white noise as specified by the <melody n>

parameters. The meanings of the <melody n> parameters are identical to those

of the MUSIC statement.

This statement can generate two parts of noises simultaneously. The parameters

specifying these two must be separated by a semicolon (;). Any two consecutive melo-

dies must be separated by a comma (,).

10 NOISE “C3D1"",""E3F1""
The above NOISE statement generates two parts of white noises simultaneously.

6.6 Printer Control Statements

PTEST

Format PTEST

Abbreviated Format
PTE.

Explanation The PTEST command causes the printer to print squares in black, blue, green, and

red in that order to check the colour specification, quantity of pen ink, and so on.

0 1 2 3 + Value specified in PCOLOR

(Black) (Blue) (Green) (Red)

This command is valid only in the text mode.

PMODE

PMODE | TN

TL

TS
GR

Abbreviated Format

Explanat ion

PM.

The PMODE command specifies the operating mode for the colour plotter-printer.

PMODE TN

The PMODE TN command returns the printer to the text mode from the graphics

mode, and sets the character size to 40 characters per line (the initial setting).

PMODE TL

The PMODE TL command returns the printer to the text mode from the graphic

mode, and sets the character size to 26 characters per line.

PMODE TS

The PMODE TS command returns the printer to the text mode from the graphic

mode, and sets the character size to 80 characters per line.

PMODE GR

The PMODE GR command switches the printer from the text mode to the graphics

mode. When switching to this mode, the BASIC program being executed must make

a note of the character size being used immediately before the mode change is made.

Doing this allows the program to return to the text mode when the [SHIFT] +

BREAK | key is pressed or a STOP command is encountered.

6-73

#** CHARACTER MODE *#*

SHNRP nE-e08 80 character mode (TL)

SHARP M2-8288 40 character mode (TN)

SHARP M2-882 26 character mode (TS)

The PMODE GR command turns any command used in the graphics mode executable

and sets the X and Y axes on the printer. The current pen location is initially set

as the origin (0, 0). The origin can be moved to any location if it is within the range

of the printable area. Printing beyond the forms may damage the pen and cause

printer trouble.

Y =999 (Max.) Y =999 (Max.)

+¥ +¥

Fa
3 g

a
Current i a
pen location (0,0) (480,0) Ss _-x 240| +x 3.

§ §
3 3
6 (-]

-Y
Y =~ 999 (Min.) -Y

Y = —999 (Min.)

X and Y axes after the origin is moved X and Y axes after execution of

to the center. (PMOVE 240, - 240: HSET) a PMODE GR command. The X-axis
is drawn from 0 to 480 and the Y-axis
from —999 to 999.

* Printer modes
The modes of printer operation and commands which can be used with different modes
are as shown in the table below.

Mode Maice’ setection Commands usable
command

Text mode PMODE TN PTEST * LIST/P

40 characters/line PCOLOR * HCOPY
PSKIP PLOT

Text mode PMODE TL PAGE

26 characters/line * PRINT/P

Text mode PMODE TS * PRINT/P USING
80 characters/line

Graphic mode PMODE GR PLINE HSET
RLINE GPRINT
PMOVE AXIS
RMOVE PCIRCLE

PHOME PCOLOR

Note:

Commands marked with an asterisk (*) can be used with a dot printer (MZ-80 PS(K));

other commands can only be used with a plotter printer.

6-74

PCOLOR

Format PCOLOR 0
1

Abbreviated Format

Example

| 3

PC;

The PCOLOR command specifies the colour to be used for the printout of charac-

ters or graphics. This command can be entered in either the text mode or graphics

mode. The available colours and the corresponding colour numbers are listed below.

0: Black

1: Blue

2: Green

3: Red

10 PCOLOR 1................... Sets the pen colour to blue,

PSKIP

Format

Explanation

Example

PSKIP <number of lines>

Abbreviated Format

PS.

The PSKIP command feeds the paper by the specified <number of lines> forward

when the specified value is positive and feeds it by the specified <number of lines >

backward when the value is negative. <number of lines > must be an integer from

—20 to 20. This statement is valid only in the text mode.

10 PSKIP 12.,

20 PSKIP —6.
.. Feeds the paper 12 lines forward.

.. Feeds the paper 6 lines backward.

PAGE

Format PAGE <number of lines>

Abbreviated Format

Explanation

Example

PA.

The PAGE command specifies the number of lines per page. <number of lines>
must be an integer from 1 to 72. The PAGE command also sets the current page

position as the first line of the page. This statement can only be executed in the

text mode.

LO PAGE 20 nasser Sets the number of lines per page to 20, With this set-

ting, the printer will space 20 lines when a form feed

is performed.

6-75

PRINT/P

Format

Explanation

Example

PRINT/P <data> {3} <data>] we

Abbreviated Format

2/P

The PRINT/P statement submits output data to the printer in almost the same for-

mat as the PRINT statement would to the screen, Either the separators ‘‘,"’ and

“©” or the TAB function in this statement have the same effect as that in the PRINT
statement. Various functions supported by the printer can be used by sending print

control codes in the following format:

PRINT/P CHR$ (control code)

10 PRINT/P "‘ABCD"’......... Prints ‘*ABCD”’.
10 PRINT/P CHR$($0A) Causes a line feed.

Note:

To execute PRINT/P statements containing control code Gor Ei successively, you

must specify them on separate lines or delimit them with colons (:). BASIC may

interpret control codes concatenated with connectors (+) as a single code sequence

and cause a print malfunction.

[Invalid] PRINT/P "+ “40”

BASIC will interpret this statement as PRINT/P “fj JB" +40". insteas,
specify the following

(Valid) PRINT/P “ : PRINT/P "B40"

PRINT/P USING

Format

Explanation

See also

PRINT/P [<palette code >]USING ‘format string’’;<data> Uf H \ <data>]...

Abbreviated Format
2/P USI.

The same as the PRINT USING statement excepting that the output device is the

printer.

PRINT USING

6-76

PLINE

Format

Abbreviated Format

Explanation

Example

PLINE [% <line type>,] xl,yl [, x2,y2, ..., xi,yi]

PLI.

The PLINE statement draws a solid or dotted line from the current pen location

to the location indicated by absolute coordinates (x1,y1), then draws a line from

that point to the location indicated by absolute coordinates (x2,y2), etc. xi must

be an integer from — 480 to 480 and yi an integer from —999 to 999. <line type>

specifies the type of line to be drawn and must be an integer from 1 to 16. Solid

lines are drawn when <line type>=1 and dotted lines are drawn when <line

type > =2 to 16, where n is a number corresponding to a line type. If % <line type>

is omitted, the previous value of n is assumed, The initial value of <line type>

is 1 (solid line). Lines selectable with <line type> are as follows:

* * * LINE 1—16 * **

i

3

4

"

The PLINE statement is only valid in the graphics mode.

10 PMODE GR

20 PLINE %1, 0, 0, 200, 0, 200, —200, 0, —200, 0, 0
30 END

The above program draws a square with sides 200 units long.

6-77

RLINE

Format RLINE [% <line type>,] xl,yl [, x2,y2, ..., xi, yi]

Explanation The RLINE statement draws a line from the current pen location to the location

Example

indicated by relative coordinates (x1,y1), then draws a line from that point to the

location indicated by relative coordinates (x2,y2), etc.

xi must be an integer from —480 to 480 and yi must be an integer from —999 to

999. The line styles selectable with <line type> are the same as for the PLINE

statement.
The RLINE statement is only valid in the graphics mode.

10 PMODE GR
20 SQ=INT (120*SQR(3))
30 RLINE %1,240,0, — 120,-SQ,-—120,SQ
40 PMODE TN

This program draws a triangle with solid lines.

PMOVE

Format

Explanation

Example

PMOVE <X coordinate>, <Y coordinate>

The PMOVE statement lifts the pen and moves it to the specified location (x,y).

<X coordinate> and <Y coordinate> must be an integer in the range — 480 to
480 and —999 to 999, respectively.

This statement is only valid in the graphics mode.

The following program draws a cross with sides 480 units long:

10 PMODE GR
20 PLINE 0,0,480,0
30 PMOVE 240,240
40 PLINE 240,240,240, — 240
50 PMODE TN

Remember to advance the paper before executing this program.

6-78

RMOVE

Format

Explanation

Example

RMOVE <X coordinate>,<Y coordinate>

Abbreviated Format
RM.

The,RMOVE statement lifts the pen and moves it to the location indicated by rela-

tive coordinates (x, y). <X coordinate> can be an integer from — 480 to 480 and

<Y coordinate> can be an integer from —999 to 999.

The RMOVE statement is only valid in the graphics mode.

10 PMODE GR
20 PMOVE 240, 0
30 PLINE 240, 0, 360, 120

40 RMOVE — 120, 0
50 PLINE 240, 120, 360, 240

60 PMODE TN

The above program draws two oblique lines.

Remember to advance the paper before executing this program.

PHOME

Format PHOME

Explanation

ml

Abbreviated Format

PH.

The PHOME statement returns the pen to the origin. This statement is valid only

in the graphics mode.

10 PMODE GR

20 PLINE 240, —240

30 PCIRCLE 240, —240, 50

AD: PROMEs decis cornet . Returns the pen to the home position.

50 PMODE TN

6-79

HSET

Format

Explanation

Example

HSET

Abbreviated Format

H.

The HSET statement sets the current pen location as the new origin. The most ap-

propriate location for drawing figures can be set as the origin by moving the pen

to the location with a PMOVE statement before specifying a HSET statement. This

statement is only vaid in the graphics mode.

10 PMODE GR

20 PMOVE 246, — 240

SOUMSET) .ssessicansnsasipaspers .. Sets (240, — 240) as the new origin (0,0).

40 PMOVE 240,0

50 PLINE 240,0,0, — 240, — 240,0,0,240,240,0

60 PHOME

70 PMODE TN

GPRINT

Format

Explanation

Example

GPRINT [[<size>,<angle>],] <text data>

Abbreviated Format

GP.

The GPRINT statement prints the specified character using the specified size and

angle.

<size> may be any number from 0 to 63. 80 characters can be printed per line

when <size> =0; 40 characters per line when <size> =1; and 26 characters per

line when <size> =2, <angle> indicates the direction in which character lines

are printed. The character is rotated with respect to its lower left corner by the an-

gle specified with <angle>. <angle> must be an integer from 0 to 3. When <size>

and <angle> are omitted, the previous or default settings are assumed. The initial
(default) values are <size> =1 and <angle> =0.

The GPRINT statement is only valid in the graphics mode.

10 PMODE GR

20 GPRINT AY sscsevensseas Prints ‘‘A’’ in the graphics mode.

30 PMOVE 240, — 240
40 GPRINT [2,2],"‘A"’......... Prints an upside down ‘‘A”’ in the 26 characters/line

50 PHOME mode.
60 PMODE TN

6-80

The following figures show various examples of printout.

<size>=0 <size> =3 A ~— ahi

A

e D..
<angle> =3

<size>=1 <size>=4 a

A
<angle>=2

<size>=2 <size>=5 4
A

AXIS

AXIS <axis>,<pitch>,<repetitions >
Abbreviated Format

AX.

The AXIS statement draws the X-axis when <axis>=1, and the Y-axis when
<axis > =0. The number of scale marks specified in <repetitions > is drawn with
the pitch specified in <pitch>.

<pitch> must be an integer from — 999 to 999. <repetitions > must be an integer
from 1 to 255.

The AXIS statement is only valid in the graphics mode.

10 PMODE GR
20 PMOVE 240, 0
30 AXIS 0, - 10,48
40 PMOVE 0,—240
50 AXIS 1,10,48
60 PMODE TN

6-81

PCIRCLE

The above example draws the X and Y axes with scale marks from —240 to 240
at 10 unit intervals.

The coordinates can be used in the same manner as ordinary Cartesian coordinates

after setting the point of intersection of the X and Y axes as the new origin. (X= —240
to 240, Y= —240 to 240)

PCIRCLE <X coordinate>, <Y coordinate>, <radius>,

<starting angle>, <ending angle>, <step angle>
<X coordinate>: —999 to 999
<Y coordinate>: —999 to 999
<radius>: 0 to 999

Abbreviated Format

Example

PCI.

The PCIRCLE statement draws a circle, or arc counterclockwise. The circle (arc)

has a <radius> and a <step angle>, with the center at location (x,y), and starts

at <starting angle> and ends at <ending angle>. A complete circle is drawn when

<starting angle> =0, <ending angle> =360, and <step angle> =0.2.

This statement actually draws a polygon, therefore <step angle > must be as small

as possible in order to draw a smooth figure. <starting angle> must be smaller

than <ending angle>. When <step angle> =0, lines connecting the center and

the starting point and the center and the ending point are drawn, The PCIRCLE

statement is only valid in the graphics mode.

10 PMODE GR:P=0
20 PMOVE 240, — 240
30 HSET
40 FOR J=240 TO 40 STEP —60
50 PCOLOR P
60 PCIRCLE 0, 0, J, 0, 360, 2
70 P=P+1

80 NEXT J
90 PMODE TN

6-82

LIST/P

Format

Explanation

HCOPY

LIST/P [<starting line number >] [—] [<ending line number>]

Abbreviated Format

L./P

The LIST/P command lists all or part of the program lines in memory on the printer.

See the explanation of the LIST command for an explanation of procedures for

specifying the range of lines to be printed. Note that, when graphic characters are

included in the program list, most of them will be printed in a different colour as

hexadecimal ASCII codes if the plotter printer is used.

This statement is valid only in the text mode.

Format

Explanation

HCOPY

Abbreviated Format
HC.

The HCOPY command copies the contents of the screen onto the printer. This com-

mand is only available for the MZ-80P5(K) printer and cannot be used for the colour

plotter printer.

PLOT

Format

Explanation

PLOT | ON |
| OFF

Abbreviated Format
PL.

The PLOT ON statement makes it possible to use the colour plotter printer as a

display unit. Thus, the MZ-800 can be used without an external display screen.

The PLOT ON statement sets the number of characters printed per line to 80 when

the screen is in the 80-column mode and sets it to 40 when the screen is in the
40-column mode.

This statement is only valid when the colour plotter printer is installed and used

in the text mode. The CONSOLE command is made invalid once a PLOT ON is

executed.

A period ‘‘.’’ is printed to represent any character which is not contained in the

colour plotter printer’s character generator. The | INST keys are

disabled by executing this statement. + can be used to change the colour

of the pen.

The PLOT OFF command cancels the PLOT ON command.

The INIT‘‘CRT:Mn””’ statement also cancels the PLOT ON command.

The printer is set to the 40-character mode if the PLOT ON is executed when the

display is in the 40-character mode; it is set to the 80-character mode if the state-

ment is executed when the display is in the 80-character mode.

6-83

6.7 Machine Language Control Statements

PEEK

Format PEEK <address>

Explanation This function returns the contents of the specified address as a decimal number from

0 to 255. <address> may be a decimal number from 0 to 65535 or a 4-digit hex-

adecimal number from $0000 to $FFFF.

Example The following program displays data stored in the area from 40960 ($A000) to 40975

($AO0F):

10 FOR AD=40960 TO 40975

20 PRINT PEEK (AD)

30 NEXT AD

40 END

POKE

Format

Explanat ion

POKE <address>, <data>[, <data>] ...

The POKE statement writes a consecutive number of data values starting at the speci-

fied address.
<address> may be a decimal number from 0 to 65535 or a 4-digit hexadecimal

number from $0000 to SFFFF, <datan> may range from 0 to 255 or from $00

to $FF. This statement can write data to any memory location, regardless of the

limit set by the LIMIT statement. Therefore, careless use of this statement can des-

troy the monitor or BASIC interpreter.

POKE $D000,$5F .
POKE 53248,95 ...

The two statements above perform the same function.

.. Uses hexadecimal numbers.

.. Uses decimal numbers.

INP@

Format

Explanat ion

INP@ <port number>, <variable>

The INP@ statement reads 8-bit data from the input port specified in < port num-

ber >, converts it into a decimal number and assigns it to <variable>. <port num-
ber> may be in the range 0 to 127 (hexadecimal $00 to $7F). Port addresses 128

to 255 ($80 to $FF) are reserved for optional peripheral devices.

=a fr tes

OUT@

Format OUT@ <port number>, <numeric expression>

Explanation The OUT@ statement converts the decimal number specified in <numeric expres-
sion> (0 to 255) to a binary format and sends it to the output port specified in

<port number>. <port number> may range from 0 to 127 (hexadecimal $00 to

$7F). Port addresses 128 to 255 (hexadecimal $80 to $FF) are reserved for optional

peripheral devices.
Peripheral devices are controlled by data transmitted to I/O ports. Consequently,

specifying an illegal number in <port number> may cause peripheral device mal-

function.

USR

Format USR (<address>[,<input string variable>] [,<output string variable>])

Abbreviated Format

Explanation

U.

The USR function transfers control to a machine language program which starts

at the specified address. As with CALL <address>, control is returned to the state-

ment following the USR function when a return instruction RET or RET cc is en-

countered in the machine language program. <address> must be a decimal or 4-digit

hexadecimal number.
The parameters are loaded into the following registers when the main program trans-

fers control to the machine language program:
DE register: Starting address of <input string variable> in memory.

B register: length of <input string variable>.

IX register: address of the error processing routine, if declared.

The machine program loads processing results into the following registers when it

returns control to the main program:

DE register: starting address of <output string variable> in memory.

B register: length of <output string variable>.

The following steps are necessary when error processing is required in the machine

language program:

1. Declare an error processing routine in the BASIC program using an ON

ERROR GOTO statement.
2. Write a program segment which loads the A register with the error code and causes

program execution to jump to the address specified in the IX register.

LIMIT

Format

=———
Explanation

Example

LIMIT <address>

LIMIT MAX

Abbreviated Format

LIM.

The LIMIT statement limits the memory space available for use by BASIC.
<address > sets the upper limit of the BASIC area; the area following that address
to SFEFF (65279) are set aside as the user area. The area from SFF00 to SFFFF

is used by the monitor as a work area, so it cannot be used for user programs.
<address> can either be a decimal number or 4-digit hexadecimal number. When
linking a BASIC program with a machine language program or storing special data
in memory, sufficient memory space must be reserved for the user area.
The LIMIT statement must appear at the beginning of the program. The LIMIT
MAX statement releases the limit specified by a LIMIT statement.

LIMIT $CFFF

Limits the BASIC program area to $CFFF and defines the area above that address
as the user area.

BASIC program area
$D000

SFEFF

LIMIT $CFFF

LIMIT MAX

Resets the limit established by a previous LIMIT statement.

6-86

eeee sal

6.8 Error Processing Statements

ON ERROR GOTO

Format ON ERROR GOTO Bese number >
<label>

Explanation

Example

Abbreviated Format

ON ERR. G. 2

The ON ERROR GOTO statement causes program execution to branch to <line

number> or <label> if an error occurs. The ERN or ERL system variable can

be used in a trap routine starting at that line to control subsequent processing ac-

cording to the type of error and the line number in which it occurred. Including

a RESUME statement at the end of the error processing routine makes it possible

to return execution to the line at which the error occurred. Executing an ON ER-
ROR GOTO statement cancels the error trap line number defined by the previous

ON ERROR GOTO statement. The error trap line number definition is also can-

celled by executing a CLR statement.

10 ON ERROR GOTO 100

20 INPUT “*X="";X
30 PRINT SQR(X)

40 END
100 PRINT “‘ERROR’’

110 RESUME 20

The program above displays the message “ERROR” and returns to line 20 if an

error occurs.

6-87

_

—

RESUME

Abbreviated Format

RESUME <line number>

RESUME NEXT

RESUME 0
RESUME

RESU.

The RESUME statement returns control to the main routine from an error process-

ing routine.

The system holds the number of the line on which the error occurred in memory

and returns program execution to that line or to another specified line after the er-

ror is corrected. The RESUME statement may be used in any of the following four

forms:

RESUME - returns to the error line.

RESUME NEXT. returns to the line following the error line.

RESUME <line number > returns to the line specified in <line number>.

RESUME 00ss0ccceeee returns to the beginning of the main routine.

Always use a RESUME statement to return to the main program from the error

processing routine.

If RESUME is encountered when no error has occurred, an error occurs.
If RESUME cannot be executed, an error occurs.

6-88

fro.

Chapter 7 Hardware

This chapter describes the MZ-800 hardware. It also describes peripheral devices which can be con-

nected to the MZ-800 and how to connect them.

7.1 MZ-800 Hardware

7.1.1 System diagram

Keyboard
interface

Monitor
CG ROM
16 KB

CRT
display SITY ARI
interface ' '

1VRAM 16 KB,
y(MZ-1R25) |

aaa |

recorder, *

Joystick
interface

General
purpose

interface slot

* Standard with the MZ-821 and optional with the MZ-811.

4 ** Can only be used with the MZ-811.
{ Optional

7-2

7.1.2 System switch settings

A 4-switch DIP switch package is located at the rear of the MZ-800. These switches are called the

system switch, The function of each switch is as follows.

Note:

Be sure to turn off the power switch when setting the system switch.

1 2 3 4

ON

OFF

| ON OFF
Not used _ -

Printer MZ Centronics

Operational MZ-700 MZ-800
mode

Switch 1: Mode switch

This switch is used to switch the operating mode between the MZ-700 and MZ-800 modes. Normally,

this switch is OFF. (See Chapter 9 for the MZ-700 mode.)

ON: MZ-700 mode
OFF: MZ-800 mode

Switches 2 and 3: Printer interface selection

These switches are used to switch the interface between the MZ printer system and Centronics system.

Both switches must be set to the same position.

ON: MZ printer

OFF: Centronics interface

If your Centronics standard printer does not operate even if both switches are set to OFF, set either

switch to ON,

Switch 4: Not used.

With the MZ-811

When a cassette recorder other than the MZ-1T04 is connected to the MZ-811’s cassette tape

recorder jack, this switch is used to switch the head polarity. If programs or data files cannot

be read from the cassette recorder, try changing the setting of this switch.

7-3

‘cole a Bias

(sowonued--zw) f]

YOUMS

Wass

NO

The following information is provided for reference only. Caution must be exercised when I/O ports

are utilized by the user, as it is possible to create machine malfunctions or to disable peripheral opera-

QD > Fd 2 § oe 5
3 ¢

7

&

3 &
°

fn

=

B

2

5

B

sas

.

s

|
8 &

5

a

.

c

°

&

WVUA

\‘sna

way

WVEA

©
zHW

Eccl

i]

Ff
J

a

2

2

ax

91
wondo,

43s3u

2p

$2zs

¢
eS 3 qg3: i

néss

¢

7-4

(2) I/O port address

The following 1/O port addresses are already assigned to the existing I/O devices or are reserved
for peripheral devices which Sharp has planned for the future.

BO to B3 : Serial 1/O port Fe FV som

CC to CF : GDG (graphic display generator) a ma

DO to D3 : 8255 (data recorder and keyboard control) :

D4 to D7 : 8253 (programmable interval timer) : ‘ Av
D8 to DF : FDC (floppy disk controller)

E0 to E6 : GDG »
FO to Fl: Joystick inputs

F2 : PSG output

F4 to F7 : QDC
FC to FF : Z-80A PIO (printer)

(3) Programmable clock generator (8253) 146

The MZ-800 has a built-in programmable interval timer. This timer is used for controlling the built-in
clock and programmable sound generator.
In the MZ-700 mode, memory mapped I/O addresses $E004 to $E007 are assigned to this timer, while
in the MZ-800 mode, I/O mapped addresses $D4 to $D7 are assigned.

$D4 : counter 0 f .
$D5: counter 1 © yr t
$D6 : counter 2 pa (eT
$D7 : control word register

Counter 0 is used for the programmable sound generator, counter 1 is used internally and coun-
ter 2 is used for interrupting the CPU.

a
PC2

DO~D7 cpu

INT

AO, At — > vor

—< 1.1MHz

8253

(4) Programmable sound generator (76489)

The MZ-800 has a built-in programmable sound generator (PSG) which can generate 3-tone chords

over 8 octaves,

I/O port address $F2 is assigned to the PSG. For details on controlling the PSG, see Appendix B.

DO-D7> > LM 386
(amplifier)

3.55 MHz
(BUS¢)

WR

CE

(8253)0UTO

CPU WAIT :

(5) Printer interface (Z-80A PIO)

The MZ-800 uses a Z-80A PIO for the printer interface.

I/O port addresses FC to $FF are assigned to the HO. pa

SFC: Control register govi Yh 4" 4F * °
$FD: Control register
$FE: Port A

PAO, PAI: printer status (in) : F 7

PA4, PAS: system status (in) : vert #
PA6, PA7: printer control (out)

SFF: Port B
Printer data (out)

DATA BUS

76

aoa

(6) Keyboard and data recorder controller (8255)

The MZ-800 uses an 8255 to control the keyboard and data recorder.

In the MZ-700 mode, memory mapped I/O addresses $E000 to $E003 are assigned to 8255 while in

the MZ-800 mode, I/O mapped addresses $D0 to $D3 are assigned.

$DO: Port A 4
PAO to PA3: KEYSTROBE signals (out) < A ge lt

PA4 to PAS: JOYSTROBE signals (out)

PA7: cursor RST (out) / te °

$D1: Port B

PBO to PB7: KEYDATA signals (in)

$D2: Port C

PCO: SOUND MASK (out) 2— Zev ada/t ore » fore
PC1: CMTWR (out) pr
PC2: disable INT (out) 0~ ~o4~ Jretresemece om swad
PC3: MOTOR (out) ¢ 0 6e pretence s - Care
PC4: SENSE (in) » ¢* s lod

PCS: CMTRD (in)
PC6: cursor FLSH (in) <*> A °

PC7: VBLNK (in) 2» ¢

$D3: Control register

7.2 Peripheral Devices

Many optional peripheral devices are available, but some of those explained in this manual may not

be available in your country.

Be sure to turn off the power switches of both the MZ-800 and peripheral device when connecting them.

7.2.1 Standard interfaces

The MZ-800 is equipped with the following interfaces as standard.

© CRT display interface

© Keyboard interface

* Data recorder interface

© Printer interface

© Joystick interface

7.2.2 Expansion I/O connector

An expansion I/O connector is provided inside the computer, which can be accessed by removing the

expansion slot cover from the rear panel. This connector is provided for the connection of an optional

interface or expansion unit. The pin assignment of the expansion I/O connector is as follows.

Component side| Solder side

Connector

78

y pret of

¢ Installation of an optional interface

1) Remove the expansion slot cover. (Store the cover in a safe place in case you want to remove the

interface in the future.)

- aS
Expansion slot cover

2) Insert the interface card into the slot, and slide it along the card guides with the component side

up. Firmly press the card into the expansion I/O connector at the rear of the slot.

Interface card

Guide

3) Remove the connector cover from optional slot cover MZ-1X17. Affix the optional slot cover to
the rear panel of the MZ-800.

Slot cover MZ-1X17

For details, see the manual supplied with the interface.

1-9

7.2.3 RAM file board (MZ-1R18)

The RAM file board is a memory device which can be used in the same manner as floppy disk drives,

except that the contents of memory are lost when the power is turned off. For full details about the
RAM file board, see the manual supplied with the RAM file board.

The installation procedure for the RAM file board is as follows.

(1) Remove the three screws which retain the expansion slot cabinet as shown below. Push the expan-

sion slot cabinet toward the rear of the MZ-800, then lift the rear side of the slot cabinet to remove

it. Unplug the connector which is connected to the main unit by opening the connector latches.

Expansion slot cabinet

(2) Place the expansion slot cabinet upside down on a flat surface to view the two internal connectors.

Insert the RAM file board into the upper connector with the insulating sheet surface facing up-

wards. Be sure to engage the tabs on the board with the hook on the expansion slot chassis (see
the figure below).

7;10

ree ad

(3) Plug the connector previously unplugged in Step 1 into the connector on the main unit. Replace

the expansion slot cabinet and secure it with the three screws, Close the connector latches to firmly

hold the connector.
Connector latch

Note:

If the cable is trapped between the cabinet and main unit, the expansion slot cabinet cannot be

replaced properly.

7.2.4 Joystick

Joysticks made by Atari Inc., or their equivalents can be used with the MZ-800.

(ee)
JOYSTICK 1 JOYSTICK 2

CweIAwaen= CeOIyrAnEevn—

Connector

7-11

———__

The connection procedure is as follows.

1) Remove the joystick connector cover from the rear panel. Store the cover in a safe place in case

you want to disconnect the joysticks in the future.

Joystick connector cover

2) Plug in the cables from the joysticks as shown below.

Be
Joystick 1 Joystick 2

7-12

7.2.5 Printers

Various types of printers can be used with the MZ-800, including two SHARP printers.

(1) Plotter-printer MZ-1P16

Connecton procedure is as follows.

1) Set switches 2 and 3 of the system switch to the ON position.

2) Remove the two screws to remove the printer connector cover from the rear panel of the MZ-800.

(Store the cover in a safe place in case you want to disconnect the printer cable in the future.)

Printer connector cover

System switch

3) Plug the printer cable connector into the MZ-800 card edge connector, with the connector key fac-

ing upwards, and fasten the connector to the MZ-800 with the screws.

Plotter-printer
(MZ-1P 16}

Screws

Printer cable

4) Plug the printer power cable into the plotter power jack on the rear panel of the MZ-800.

7-13

(2) Dot matrix printer MZ-80P5(K)

1) Set switches 2 and 3 of the system switch to the ON position.

2) Remove the two screws to remove the printer connector cover from the rear panel of the MZ-800.

(Store the cover in a safe place in case you want to disconnect the printer cable in the future.)

UAB
System switch Printer connector cover

3) Connect the printer connector to the MZ-800 printer connector with the MZ-1C25 optional cable,
Remember to refasten the connector to the MZ-800 by using the screws.

Dot printer [MZ-8OP5(K)}

IMZ-1C25}

Screws

7-14

——

(3) Other printers
Switching switches 2 and 3 of the system switch OFF allows you to use a printer equipped with a Cen-

tronics interface. However, some commercially available printers which are sold as Centronics stan-

dard printers do not actually comply with the Centronics Standard and therefore cannot be used.

Some printers have character code sets different from that used by the MZ-1P16 or MZ-80P5(K) printer.

These types of printers can be used but may require special programming to allow full utilization of

all the features of the MZ-800.

System switch

Printer interface

Component side Solder side

GND
GND
GND
GND
GND

Connector

4

7-15

7.2.6 Optional graphic memory MZ-1R25

An optional MZ-1R25 graphic memory further improves the display capability of the MZ-800. The

set includes two ICs which must be installed inside the cabinet. Follow the installation procedure below:

1) Remove screws (a) and detach the data recorder unit and expansion slot compartment cabinet as

indicated by arrows (@ and @).

2) Unplug connectors A and B.

3) Remove the screws (b).

4) Remove the metal fixtures.

@

{Side view)

Metal fixture

7-16

5) Press and hold the upper cabinet at the points indicated by the arrows @), then pull up the upper
cabinet to remove it from the lower cabinet.

Upper cabinet

&

Lower cabinet ze

6) Lift the front of the keyboard as shown below.

Back side of keyboard

7) Two IC sockets are located near the front right corner of the main printed circuit board. Insert

the IC chips into the IC sockets as shown below. Take care that you install the pointing chips in

the correct direction (with the dot or notch over the first pin of the IC facing the center of the com-

puter). Installing the chips in the wrong direction may damage them.

Back side of keyboard

MZ-1R25

Printed circuit board

8) Perform steps 1) to 6) in the reverse order to reassemble the MZ-800.

7-17

crs a

7.2.7 External cassette tape recorder (for MZ-811 only)

With the MZ-811, an ordinary audio cassette tape recorder can be used as the data recorder.

Connect the WRITE and READ jacks on the rear panel of the MZ-811 to the MIC and EAR

(or EXT.SP) jacks on the tape recorder, respectively. Use shielded audio cables with 3.5 9 jacks

at the computer ends,

Note the following when using an ordinary cassette tape recorder,

1) The message ‘* 4 RECORD. PLAY” does not appear when a SAVE command is entered.

Be sure to press the | RECORD | button on the recorder before entering this command. Press

the | STOP | button to stop the recorder after the message ‘‘Ready”’ is displayed. The recorder

will not stop until the |STOP | button is pressed.

2) The message “‘ £ PLAY’ does not appear when a LOAD command is entered. Be sure

to start playing the tape after entering the command. Press the button to stop the
recorder after the message ‘‘Ready’’ is displayed. The recorder will not stop until the

button is pressed.

3) The level and tone controls of the cassette tape recorder must be adjusted to appropriate

levels. Some cassette recorders (e.g., those with an automatic level control) may not be usa-

ble. In such cases, please purchase the MZ-1T04.

4) Programs cannot be loaded unless the head polarity is correct. Try changing the setting of

switch 4 of the system switch to reverse the head polarity if programs cannot be loaded.

5) For any transfer or collation, use the tape recorder that was used for recording. If the tape

recorder for transfer or collation is different from that used for recording, no transfer nor

collation may be possible.

7-18

Chapter 8 Monitor

8.1 General

Although a machine language program is difficult to understand because of the numeric fashion in

which data is presented, it has many advantages, e.g., it runs much faster and requires less memory

space than a BASIC program. Moreover, machine language makes it possible to develop more hardware-

oriented programs, to make fuller use of your computer. You can develop machine language programs

by using the monitor commands.

This chapter describes the function and use for each monitor command.

When using a monitor command, note the following points.

* Any monitor command is accepted after the [CR] key is pressed.
* Any command must be input exactly as it is described in this manual. Do not enter spaces in the

command line.
* Single-byte data in a monitor command must be specified with a 2-digit hexadecimal number, and

2-byte (address) data must be specified with a 4-digit hexadecimal number. The ‘‘0"’ in the upper

digit must not be omitted.

* Filename characters exceeding the limit are ignored.
* The entire memory space can be accessed by monitor commands. However, remember that the

presence of even a single error in a program is likely to result in the destruction of all data stored

in your MZ-800.

8-2

8.2. ROM Monitor and BASIC Monitor

The MZ-800 is provided with two types of monitors: a ROM monitor and a BASIC monitor. The ROM

monitor resides (is located) in ROM, while the BASIC monitor is loaded into RAM when you load
the BASIC interpreter.

The difference between the ROM and BASIC monitors is shown below.

ROM monitor BASIC monitor

(resides in ROM) (resides in RAM)

ro

8.3 Starting the ROM Monitor

When you turn on the power to the MZ-800, you will see the following screen.

Make ready CMT

Please push key

C: Cassette tape

M: Monitor

Press the [mM] key to start the monitor. The screen will then change and appear as follows.

** MONITOR 92Z-504M **
*

The asterisk (*) on the second line is called the monitor prompt, and asks you to enter a monitor

command.

The monitor commands are explained in Section 8.4.

8-4

8.4 Monitor Commands

L Command

Format

Explanation

Example

L

This command loads a machine language program from the cassette.

When ** 4 PLAY” is displayed on the screen, press the button.

The following example loads a machine language program,

*L

4 PLAY = Press the [PLAY] button on the data recorder.

S Command

Format Ss

Explanation This command saves the specified memory block onto the cassette with specified
filename.

Example The following example saves a machine language program stored in addresses $6000

to $60A3 onto the cassette under the filename “‘MFILE’’. The address from which
the program is to be executed is $6050.

*S
Filename? MFILE [CR]
Top adrs? 6000 | CR

End adrs? 60A3 | CR

Exc adrs? 6050 [CR |
4 RECORD.PLAY

Press the |RECORD | button

8-5

—————

pir oe

M Command

Format

Explanation

M <starting address>

This command modifies the contents of memory, starting at the specified address.

Example The following example fills addresses $CO00 to $C002 with the value $FF and ad-
dresses $C010 to $C013 with the value $88.

*Mco00 [CR]
C000 OO FF

C001 00 FF

C002 00 FF

C003 00 +
*Mco10 [CR |
C010 00 88

C011 00 88

C012 00 88

C013 00 88

014 00 [SHIFT] +
To return to the monitor prompt, press + [BREAK].

J Command

Format

Explanation

Example

J<address>

This command transfers control to the specified address, by loading the < address>

into the program counter of the CPU.

The following example transfers control to address $1200.

*J1200

G Command

Format G<address >

Explanation

Example

This command calls the specified address.

The following example calls address $1200.

*G1200

D Command

Format

Explanation

D<starting address> <end address>

This command dumps the contents of the specified memory area.

When the <end address> is omitted, 160 bytes from the <starting address> are
displayed.

The dislay format is as follows:

HHHH HH HH HH HH HH HH HH HH ABCDEFGH
l me =

T
2-digit hexadecimal numbers (8 bytes) Character data (8 bytes)

Starting address

To modify the memory contents, move the cursor to the data to be modified, type

in the new data and press the key.

Note:

The last eight characters indicate the ASCII codes corresponding to eight hexadecimal

numbers. A contorl code is represented by a period (.). To stop the screen display,

press the space bar; to return to the monitor prompt, press while
holding down the | SHIFT | key.

The following example dumps the contents of addresses $C000 to $C700.

*DCO00C700

V Command

Format

Explanation

Example

v

This command verifies data saved on the cassette, or checks whether the data saved

on the tape and the data in memory are identical.

When no incorrect data is detected, the message ‘‘OK!”’ is displayed. If one or more

bytes that do not match are detected, the message ‘‘CHECK SUM ERROR?” is dis-

played.

The following example verifies the data of file ‘‘MFILE”’ which has been previous-

ly saved with the S command.

* VMFILE
& PLAY -——— Press the button.

B Command

Format B

Explanation This command specifies that the buzzer in the MZ-800 sounds every time a key is

Example

pressed. If the B command is entered again, the buzzer toggles off and no longer

sounds.

+8 [ca]

8.5 BASIC Monitor

When the BASIC interpreter is used, the BASIC monitor can be used instead of the ROM monitor.

To call the BASIC monitor, key in the BASIC BYE command, After the prompt ‘‘*"’ is displayed,
key in a BASIC monitor command.

The BASIC monitor uses memory area $FFOO to $FFFF as its stack area.

All variables for BASIC programs are not changed when the BASIC monitor is called, but they can
be changed by monitor commands.

ae af

8.6 BASIC Monitor Commands

P Command (Print switch)

Format

Explanation

e

This command outputs the data produced by the D or F command to the printer

or screen depending on whether the current operating mode is the printer mode or

the screen mode. When the BASIC monitor is started, the screen mode becomes

valid. The mode is changed each time the P command is entered.

In the printer mode, if no printer is connected or the printer is off-line, the monitor

prompt (*) is displayed preceded by the message ‘‘ERR?’’.

Check the printer or key in the P command to enter the screen mode.

D Command (Dump)

Format

Explanation

D<starting address> <end address>

This command displays the contents of the main memory. When the end address

is omitted, the 128 bytes following the starting address are displayed. When the start-

ing address is omitted, the 128 bytes following the last end address are displayed.

The display format is as follows:

tHHHH =HH HH HH HH HH HH HH HH/ABCDEFGH
i ot sa —

Character data (8 bytes)

2-digit hexadecimal numbers (8 bytes)

Starting address

To modify the memory contents, move the cursor to the data to be modified, type

in a 2-digit hexadecimal number or character preceded by a semicolon and press

the key.

Note:
The last eight characters indicate the ASCII code equivalents to the eight hexadecimal

numbers. Control codes are represented by periods (.), To stop the screen display,

press the key, and to return to the monitor prompt, press | BREAK | while

holding down the |SHIFT} key.

8-9

M Command (Memory set)

Format M<starting address >

Explanation This command modifies the contents of the main memory. When the <starting

address> is omitted, modification is made from the address indicated by the cur-

rent pointer. To return to the monitor prompt, press | BREAK | while holding down the

(SHIFT) key.
When the M command is entered, the cursor positions itself at the data for the speci-

fied address. The address pointer is incremented by the number of data bytes specified.

Data may be either a 2-digiht hexadecimal or a character preceded by a semicolon.

F Command (Find)

Format F<starting address> <end address> <data><data> ...

This command searches for one or more bytes of data at the specified addresses,
and if found, displays the addresses and data with the format shown for the D com-

mand. To return to the monitor prompt, press while holding down the
key.

G Command (Gosub)

Format G<call address >

Explanation This command calls the specified address. The stack pointer resides at address SFEFF.

T Command (Transfer)

Format T<starting address> <end address> < destination address >

Explanation This command transfers data from the specified source address to the specified des-

tination address.

8-10

S Command (Save)

Format

Explanation

S<starting address> <end address > <execution address>:
<device name>: < filename >

This command saves data from the specified address onto the specified device. The

execution address is the address to which control is to be transferred when the pro-

gram is loaded by the L command. Filename must be specified after a colon (:).

L Command (Load)

Format

Explanation

L<starting address >:<device name>: < filename>

This command loads the specified file from the specified device. If the <starting

address> is omitted, the file is loaded to the same address as that specified when

the file was first saved by the S command. If filename is omitted when the device

is CMT:, the first file found is loaded. When the [SHIFT | + | BREAK | key is pressed

or acheck sum error occurs during the load operation, the message “‘ERR?”’ is dis-

played, followed by the monitor prompt.

V Command (Verify)

Format

Explanation

V<filename>

This command loads the specified file from the cassette and compares it with the

same file still in the main memory. The purpose of this command is to check whether

the file was saved onto the cassette correctly.

If an error is detected, the message ‘‘ERR?”’ is displayed.

R Command (Return)

Format

Explanation This command returns control to the program from which the monitor was called.

If the stack pointer for the program which called the monitor resides in addresses

$FFOO to $FFFF or if no return address is saved in the stack, control cannot be

returned by the R command. When this happens, warm start the computer with

the G command.

8-11

Chapter 9 MZ-700 Mode

9.1 Using MZ-700 Programs

Most of the programs for the SHARP MZ-700 series computer can be run on your MZ-800 computer.

However, programs which use joystick MZ-1X03 cannot be used. Please consult your dealer to check

whether the MZ-700 programs you already have can be used with the MZ-800.

To run on an MZ-700 program on your MZ-800, you must first place the MZ-800 in the MZ-700 mode.
This can be done by switching switch 1 of the system switch on the rear panel ON, then turning on
the power to the MZ-800.

MZ-700 BASIC (1Z-013) is recorded on the beginning of the side of the cassette which is labeled ‘‘BASIC
1Z-013"".

Three BASIC demonstration programs for the MZ-700 are recorded on the tape following MZ-700
BASIC.

These programs can be executed as follows.

After loading BASIC (1Z-013), advance the tape to one of the values indicated below, then input the
following.

“OPENING” . 130
“MUSIC” 170
“COLOR PLOTTER.... 190

RUN “CMT:”

When ‘** # PLAY”? is displayed, press the | PLAY | button.

After the tape stops, press the [STOP | button. To stop the program, press the [SHIFT] and [BREAK |
keys at the same time.

9-2

9.2 Summary of MZ-700 BASIC Commands and Statements,
Functions and Operations

Commands

LOAD LOAD “ABC” Loads BASIC text file ABC from the cassette tape into memory.

SAVE SAVE “‘E"" Names the BASIC text currently in the text area ‘‘E’’ and writes in

to the cassette tape.

RUN RUN Executes the program from the heading of the BASIC text currently
in the text area.
Note:
At the RUN command, all variables become 0 or null immediately

prior to program execution.

RUN 1000 Executes program from statement number 1000.

MERGE MERGE “‘TEST’’ Merges program currently in the memory and ‘‘TEST”’ file in the

__cassetie tape. _
VERIFY VERIFY “‘H’’ Compares program text currently in BASIC text area and content of

cassette tape file specified by file name ‘‘H”’.

AUTO AUTO Automatically generates line numbers 10, 20, 30 ... during text
making.

AUTO 200, 20 Automatically generates 200 220, 240 ... in steps of 20, from state-

ment number 200.
AUTO command is released by pressing + [BREAK] keys.

LIST LIST Displays all lists of BASIC text currently in text area.

LIST—500 Displays list up to statement number 500.

LIST/P LIST/P Display list goes to printer. (TEXT MODE)

RENUM RENUM Changes statement number of the program.

RENUM 100 Renumbers all statements beginning with first statement number 100,
and in steps of 10.

NEW NEW Erases BASIC text currently in text area and clears variable area.

Machine language area specified by LIMIT command: is not cleared.

CONT CONT Continues program execution. In other words, restarts execution from

point of interruption by + keys or STOP statement
during program. CONT command becomes invalid when, during a

program break, the BASIC text is edited.

BYE BYE Moves system control from BASIC to monitor. (The return from mo-
nitor to BASIC can be made by monitor command ‘‘R’’.)

KEY LIST KEY LIST Lists, on the CRT display, the definition condition of the definable

function keys.

File control statements

WOPEN 10 WOPEN Opens a data file on cassette tape prior to writing data to it. This
“DATA” command also assigns name DATA to the data file.

PRINT/T 20 PRINT/T X Writes data to cassette tape in the same format as it would be dis-
played by the PRINT statement.

ROPEN 10 ROPEN Searches for data file DATA on cassette tape and opens that file to
“DATA” prepare for reading data from it.

INPUT/T 20 INPUT/T X Inputs data from a cassette file and passes it to variable X.

CLOSE 30 CLOSE Closes cassette data files after writing or reading has been completed.

9-3

Error processing statements

ON ERROR ON ERROR GOTO If an error occurs during program execution, this is a sentence saying
GOTO 1000 to jump to statement number 1000.

IF ERN IF ERN=43 THEN If the error number is 43, this is a command to jump to statement

1050 number 1050.

IF ERL IF ERL=350 A command to jump to statement number 1090 if the error statement
THEN 1090 number is 350.

IF (ERN = 43)* A command to finish the program if the error number is 43 and the
(ERL = 700) THEN error statement number is 700.
END For the BASIC, if an error occurs during the program, the error

number and error statement number will be set, respectively, to varia-
bles ERN and ERL.

RESUME 650 RESUME Transfers control once again to the command generating the error.

700 RESUME Transfers control to the command following the command generating
NEXT the error.

750 RESUME 400 Transfers control to statement number 400.

800 RESUME 0 __ Trasnfers control to the program heading.

Substitution statement

LET LET A=X+3 Substitutes sum results of numerical variable X and numerical data 3
to numerical variable A. LET can be omitted.

Input/output and colour control statements

COLOR 10 COLOR,,,2 Changes all screen background colour to red.

20 COLOR 3,2,7 Changes the colour of characters at coordinates (3,2) to white.

30 COLOR 4,2,4,2 Makes the colour of characters at coordinates (4,2) green, and the
background colour red.

PRINT 10 PRINT A Displays the content of numerical variable A on the CRT display.

?AS Displays the content of string variable A$ on the CRT display.

100 PRINT [6,5] Writes the ““ABC’’ string in yellow on a light blue background.
“ABC

110 PRINT [,4] Writes the ‘‘DEF”’ string in yellow on a green background.
“DEF”

120 PRINT [7,4] | Writes the ““GHI”’ string in white on a green background.
“GHI"
200 PRINT New line if PRINT only.

PRINT USING PRINT USING ‘# A designation which lines up decimal point positions by a fixed
HAAR GA decimal point display.

INPUT 10 INPUT A Inputs values relative to variable A from the keyboard.

20 INPUT A$ Inputs strings relative to string variable A$ from the keyboard.

30 INPUT Before input from the keyboard, the question string data VALUE? is

“VALUE?”;D displayed. The semi-colon is used to separate the string from the

variable.

40 INPUT X, X$, Numerical variables and string variables can be combined by using
Y, ¥$ the comma (,) to separate them, but it is necessary to match the type J

of variable at the time of input.

SET SET 30,15 Iluminates the position of coordinates (30,15).

RESET RESET 30,15 Erases the position of coordinates (30,15).

9-4

GET 10 GETN Inputs one numerical character from the keyboard relative to numeri-

cal variable N. If the key is not pressed at that time, 0 is input.

20 GET K$ Inputs one string from the keyboard relative to string variable KS. If

the key is not pressed at that time, AS becomes vacant.

READ ~DATA 10 READ A,B,C Numerical data 25, —0.5 and 500 are substituted to, respectively, nu-
1010 DATA 25, merical variables A, B and C by execution of the READ-DATA

—0.5, 500 statements at the left.

10 READ H$,H, The first data of the DATA statement, i.e., string data “HEART”,
S$$,S is substituted for the first variable of the READ statement, i.e., for

30 DATA the string variable H$. Next, numerical data 3 is substituted for the
“HEART, 3 second variable H, and read-in continues one after the other.

35 DATA
“SPADE”, 11

RESTORE 10 READ A,B,C In the example at the left, 3, 6 and 9 are respectively substituted for

20 RESTORE variables A, B and C by the READ statement in statement number

30 READ D,E 10, but, because the RESTORE statement occurs next, the values
100 DATA 3, 6, next substituted for variables D and E by statement number 30's

9, 12, 15 READ are, respectively, 3 and 6, not 12 and 15.

700 RESTORE Moves the data read-out pointer in the READ-DATA statement to

200 the heading of the DATA statement in statement number 200,

Loop statements

FOR ~ NEXT 10 FOR A=1 TO
10

20 PRINT A
30 NEXT A

The statement number 10 is a command to change variable A and

substitute for values from | to 10; the value of the first A becomes
1. Because the value of A is displayed on the CRT screen by state-

ment number 20, the numeral 1 is displayed. Next, the value of A be-

comes 2 by statement number 30, and this loop is repeated. The loop

is repeated in this way until the value of A becomes 10. (At the point

when the loop ends, the value 11 is entered to A.)

10 FOR B = 2TO
8 STEP 3

20 PRINT B
30 NEXT B

A command to change variable B and substitute for values from 2 to
8 in steps of 3 (statement number 10). It is also possible to make the
STEP value negative and make the variable smaller each time.

1OFOR A=1 TO 3
20 FOR B=10T0 230 0|>
30 PRINT A, B g
40 NEXT B.
50 NEXT A

An example of an overlay of the FOR~ NEXT loops (variables A
and B). Note that B loop is placed inside A loop. Nesting of loops
(doubling, tripling ...) is possible, but the inner loop must be en-
closed within the outer loop. FOR ~ NEXT nesting must not exceed
15 levels.

9-5

Branch statements

GOTO 100 GOTO 200 _Jumps to statement number 200 (= movement of program execution).

GOSUB~ 100 GOSUB 700 Branches to statement number 700 subroutine (calling of subroutine).

RETURN: 9 wiiditsiseecciunnedenics Ends subroutine execution by RETURN statement, and returns to
800 RETURN statement following GOSUB command in the main program.

IF ~THEN 10 IF A>20 Jumps to statement number 200 if variable A is larger than 20. Exe-
THEN 200 cutes next statement if A is 20 or less.

50 IF B<3 THEN Substitutes B+3 for variable B if variable B is less than 3. Executes
B=B+3 next statement if B is 3 or greater.

IF~GOTO 100 IF A> =B Jumps to statement number 10 if variable A is equal to or greater
GOTO 10 than variable B. Executes next statement if A is less than B.

IF ~GOSUB 30 IF A=B*2 Branches to statement number 90 subroutine if value of variable A is
GOSUB 90 equal to twice the value of B. If not, executes next statement.

(If there is a multi-statement following a conditional statement, the

ON statement is executed when the condition is not reached, but the
IF statement moves the execution to the next statement number if the
condition is not reached, and the multi-statement is ignored.)

ON~GOTO 50 ONAGOTO Jumps to statement number 70 if variable A is 1, to statement num-
70, 80, 90 ber 80 if it is 2, and to statement number 90 if it is 3. The next state-

ment is executed if A is 0 or 4 or more. The INT function is included
in ON, so jumps to statement number 80 if A is 2.7, in the same way
as 2.

ON~GOSUB 900ONAGOSUB Branches to statement number 700 subroutine if variable A is 1, and
700, 800 to statement number 800 if it is 2. The next statement is executed if

A is 0 or 3 or more.

Definition statements

DIM 10 DIM A(20) For one-dimensional numerical array variable A(), 21 array variables

become available, from A(0) to A(20).

20 DIM B{79,79) For two-dimensional numerical array variable B(), 6400 array varia-
bles become available, from B(0, 0) to B(79,79).

30 DIM C1$(10) For one-dimensional string array variable C1$(), 11 array variables

become available, from C1$(0) to C1$(10).

40 DIM K$(7,5) For two-dimensional string array variable K$(), 48 array variables
become available, from K$(0, 0) to K$(7, 5).

DEF FN 100 DEF FNA (X) Statement number 100 defines X?—X to FNA (X), statement number
=X12-X 110 defines logyoX +1 to FNB (X), and statement number 120 defines

110 DEF FNB (X) logeY to FNZ (Y).
=LOG (X)+1

120 DEF FNZ (Y) Each function is limited to 1 variable.
=LN (Y)

DEF KEY 15 DEF KEY(1)= The DEF KEY statement of statement number 15 defines the func-
“LIST’’+CHR$ tion LIST [CR] to function key number 1, and statement number 25
(13) defines the function LOAD:RUN [CR] to function key number 2.

25 DEF KEY(2)=
“LOAD:RUN"

+CHR$(13)

\
Comment statements and control statements

: REM 200 REM JOB1 REM is a comment statement; ignored when program is executed.

STOP 850 STOP Stops program execution and awaits command. If CONT command

given here, program continues.

| END 2000 END Indicates end of program. Executes program end.

CLR 300 CLR All numerical variables and character variables become 0 or vacant
(null); all array variables return to undetermined condition. All DEF
FN statements also become invalid.

CURSOR 50 CURSOR 25, Specifies the position by numerals or variables: form 0 to 39 from

15 the left end in the X axis direction , and 0 to 24 from the top end in

60 PRINT ABC” the Y axis direction. For the example at the left, string ‘‘ABC"’ is

displayed from the 26th cursor position from the left end of the
screen and the 16th cursor position from the top end.

CONSOLE 10 CONSOLE O, ‘The scroll range covers the whole screen.

25, 0, 40

20 CONSOLE 5, Specifies the scroll range form the Sth line to the 15th line.
15

30 CONSOLE 0, Specifies the scroll range from the Sth line to the 30th line.
25, 5, 30

40 CONSOLE 0, Specifies the scroll range to a 10x 10 range.
) 10, 0, 10

50 CONSOLE 2, Specifies the scroll range to the scroll range shown in the figure
20, 2, 35 below.

(39,0)
:

(39,24)

SIZE ? SIZE Displays the unused size (in bytes) of the BASIC text area.

TIS 100 TI$ = Sets the internal clock to 10:20:30 PM. Time data are expressed as a
) 222030" _6-digit figure within quotation marks.

Music control statements

MUSIC 300 TEMPO 7 Tempo 7 (fastest speed) is specified by statement number 300. By

TEMPO 310 MUSIC’’DE# statement number 310, re mi fa# sol la (midrange) are played at tem-

FGA” po 7. If there is no TEMPO statement, the music is played at the
tempo of the default value.

300 M1$="C3E In this example, the melody is substituted to the 3 string variables

G+c”" and the MUSIC command is executed, When the staff notation is
310 M2$="BGD used, the notes below are played. Note that, because there is o TEM-

-G" PO statement, the playing is at the default value tempo.
320 M3$=

“CBR5"

330 MUSIC M1$,
M28,M3$

9-7

Machine language program control statements

INP@ INP@$E8,A Substitutes data at port number $E8 for variable A.

oOUuT@ OUT@$E8,A Outputs variable A to port number SE8.

LIMIT 100 LIMIT 49151 Limits the area used by the BASIC program to the 49151 address

(BFFF with hexadecimal notation).

100 LIMIT A Limits the area used by the BASIC program to the address of varia-

ble A.

100 LIMIT $BFFF Limits the area used by the BASIC program to the address BFFF in

hexadecimal notation.A hexadecimal notation is indicated by a ‘*$””

mark before the notation.

300 LIMIT MAX Returns the area used by the BASIC program to the maximum

memory.

POKE 420 POKE 49450, Sets data 175 (decimal notation) to the decimal notation address

175 49450.

130 POKE AD, Sets the value (0 to 255) indicated by variable DA to the address

DA specified by variable AD.

PEEK 150 A=PEEK Changes the data at decimal notation address 49450 to a decimal

(49450) number, and substitutes for variable A.

160 B=PEEK (C) Changes data entered at the decimal notation address specified by

variable C to a decimal notation, and substitutes for variable B.

USR 500 USR (49152) Moves program control to decimal address 49152. This control mov-

ement has the same function as the machine language CALL com-
mand. As a result, when the RET command (201 at decimal nota-

tion) is in the machine language program, returns to the BASIC

program.

550 USR (AD) Calls the decimal address specified by variable AD.

570 USR ($C000) Calls the hexadecimal address C000.

Printer control statement

AXIS Valid in GRAPH mode.
30 AXIS 0, —10, Adds a scale of 48 graduations in increments of 10 to the Y-

48 coordinate axis from the current pen position.

50 ASIX 1, 10, Adds a scale of 48 graduations in increments of 10 to the X-
48 coordinate axis from the current pen position.

CIRCLE Valid in GRAPH mode.

50 CIRCLE 0, 0, Draws a circle (radius 240) from coordinates (0,0).

240, 0, 360,
0, 2

GPRINT Valid in GRAPH mode.

30 GPRINT (2,2), Prints the character A upside down at the size of the 26-digit mode

ane of the TEXT mode.

HSET 30 HSET Specifies the current pen position to a new starting point. (Valid in

GRAPH mode.)

LINE Valid in GRAPH mode.

10 LINE% 1, 240,
0, 240, —240,
0, — 240, 0, 0

Coordinates (240,0), (240, — 240), (0, — 240) and (0,0) are connected
by a solid line from the current pen position.

MODE MODE TN Returns from the GRAPH mode to the TEXT mode (40 characters
per line).

MODE TL Returns from the GRAPH mode to the TEXT mode (26 characters
per line).

MODE TS Returns from the GRAPH mode to the TEXT mode (80 characters
per line).

MODE GR Switches from the TEXT mode to the GRAPH mode (in order to

draw graphs and figures).

MOVE Valid in GRAPH mode.

10 MOVE 150, Moves the pen upward from the current pen position to coordinates
100 (150, 100).

RMOVE Valid in GRAPH mode.

20 RMOVE — 240, Moves the pen upward relatively from the current pen position by
240 —240 (X direction) and 240 (Y direction).

PAGE Valid in TEXT mode.

10 PAGE 30 Specifies 30 lines per page.

PCOLOR Valid in both TEXT and GRAPH mode.

10 PCOLOR 1 Prints ‘‘ABC"’ to the plotter printer in blue.
20 PRINT/P

“ABC”

PHOME PHOME Moves the pen upward from the current pen position and returns to
the starting point. (Valid in GRAPH mode).

PLOT PLOT ON Enables use of colour plotter printer as substitution for the display.

(Valid in TEXT mode.)

PLOT OFF Cancels above function.

PRINT/P Valid in TEXT mode.

10 PRINT/P A, A$ Outputs string variable A$ content after the numerical variable A
content to printer.

20 PRINT/P ‘“‘H’’ For form feed of printer.

PRINT/P Outputs format specified data to screen. Format specification is writ-
USING ten after the word USING.

PRINT/P USING Numerical variable A contents are output to printer within 4 digits,
VHAHACA justified right.

RLINE Valid in GRAPH mode.

70 RLINE% 1, Connects specified positions, relatively from current pen position
240, 0, —120, (240,0), (— 120, -SQ) and (—120,SQ) by solid line.
~SQ, —120,
sa

SKIP Valid in TEXT mode,

10 SKIP 10 Advances the paper 10 lines.

20 SKIP —10 Rewinds 10 lines.

TEST TEST Checks colour specification and ink amount and dryness. (Valid in

TEXT mode).

Arithmetic functions

ABS (X) A=ABS (X) Assigns the absolute value of variable |X) to variable A.

Example: A= ABS (2.9)+A=2.9

A=ABS (—5.5)"A=5.5

SGN (X) A=SGN (X) Assigns the numeric sign of variable X to variable A. If the value of

X is negative, —1 is assigned to A; if X is 0, 0 is assigned to A; and

if X is positive, 1 is assigned to A.
1 (X>0) Example; 1 is assigned to variable A when

A=3;0 (X=0) A=SGN (0.4) is executed.

—1(X<0)

INT (X) A=INT (X) Assigns the greatest integer value to A which is less than or equal to

the value of variable X.
Examples: A=INT (3.87) -A=3

A=INT (0.6) —-A=0
A=INT (—3.87) A= —-4

SIN (X) A=SIN (X)

A=SIN(30*PAN1)/180)

Assigns the sine of X (where X is in radians) to variable A, If the

value of X is in degrees, it must be converted to radians before this

function is used to obtain the sine. Since 1 degree equals +/180 radi-

ans, the value in radians is obtained by multiplying the number of

degrees by PAI(1)/180. For example, 30° = 30* PAI(1)/180 radians.
The same applies to the COS, TAN, and ATN functions.

COS (X) A=COS (X) Assigns the cosine of X (where X is in radians) to variable A.

A=COS
(200 + PAI(1)/180)

TAN (X) A=TAN (X) Assigns the tangent of X (where X is in radians) to variable A.

A =TAN(Y *PAI(1)/180)
ATN (X) A=ATN (X) Assigns the arctangent in radians of X (tan'X) to variable A. The

A=180/PAI(1)*ATN(X) value returned will be in the range from —z/2 to 1/2.

SQR (X) A=SOR (X) Calculates the square root of X and assigns the result to variable A.

X must be a positive number or 0.

EXP (X) A=EXP (X) Calculates the value of e* and assigns the result to variable A.

LOG (X) A=LOG (X) Calculates the common logarithm of X (logio X) and assigns the

result to variable A.

LN (X) A=LN (X) Calculates the natural logarithm of X (loge X) and assigns the result

to variable A.

PAI (X) A=PAI (X) Assigns the value to variable A which is X times the value of 7.

RAD (X) A=RAD (X) Converts the value of X (where X is in degrees) to radians and as-

signs the result to variable A.

9-10

String control functions

—_

LEFTS$ 10 A$=LEFT$ Substitutes string variable X$ (from beginning to Nth character) for

(X$,N) string variable A$. It doesn’t matter whether N is a constant, variable

or numerical formula,

MIDS 20 B$=MID$(X$, Substitutes string variable X$ (from Mth character to N charater) for
M, N) string variable BS.

RIGHTS 30 C$=RIGHT$ Substitutes string variable X$ (from end to N character) for string
(X$, N) variable C$.

SPC 40 D$=SPC (N) Substitutes N number of spaces for string variable D$.

CHRS 60 F$=CHRS(A) Converse to the ASC function, substitutes ASCII code characters
which are equivalent to the value of real number A for string variable

F$. It doesn’t matter whether A is a constant, variable or numerical
formula.

ASC 70 A=ASC (X$) Substitutes the value of the ASCII code of the first character of
string variable X$ for variable A.

STRS 80 N$=STR$ (1) Converts to the VAL variable, substitutes the numerical variable I as
if it were a string for string variable N$.

VAL 90 1=VAL (N$) — Substitutes the numerical string of string variable NS as if it were a
number for variable I.

LEN 100 LX =LEN Substitutes the character length (character number) of string variable

(X$) X$ for variable LX.

110 LS=LEN Substitutes the sum of the character length of string variables X$ and
(X$+Y¥$) YS for variable LS.

Tab function

TAB 10 PRINT TAB Displays the value of variable A at the X + 1 character position

(X);A counting from the left edge of the screen.

Arithmetic operations

The calculation priority is of white figures on dark background at left side, but the calculation of figures in
parentheses () has even higher priority.

f 10 A=X1TY Substitutes the XTY calculation result for variable A. (Note, however,

(power) that an error occurs if Y is not an integral number when X is a nega-
tive number at XTY.)

- 10A=-B 0—B is a subtraction; note that the “‘—"’ of —B is a minus sign.
{minus sign)

* 10 A=X*Y Substitutes the multiplication result of X and Y for variable A.
(multiplication)

4 10 A=X/Y Substitutes the division result of X and Y for variable A.
(division)

+ 10 A=X+Y Substitutes the addition result of X and Y for variable A.
(addition)

- 10 A=X-Y Substitutes the subtraction result of X and Y for variable A.
(subtraction)

9-11

Liem

Comparison logic operators

= 10 IF A=X THEN If variables A and X are equal, executes commands from THEN
onward.

"XYZ" If string variable A$ content is string XYZ, executes commands from
THEN onward.

> 10 IF A>X THEN If variable A is greater than X, executes commands from THEN
+ onward.

< 10 IF A<X THEN If variable A is smaller than X, executes commands from THEN
siekatanianaeaitai onward.

<>or>< 10 IF A< >F If variable A and X are not equal, executes commands from THEN
THEN. crcnnnssss onward.

>=or=> 10 IF A>=X If variable A is greater than or equal to X, executes commands from

THEN .. THEN onward.

<=or=< 10 IF A< =X If variable A is smaller than or equal to X, executes commands from
THEN wicinscesis THEN onward.

* 40 IF (A>X)*(B If variable A is greater than X and variable B is greater than Y, exe-

>Y) THEN cutes commands from THEN onward. -

+ 50 IF (A>X)+(B_ If variable A is greater than X or variable B is greater than Y, exe-
>Y) THEN cutes commands from THEN onward.

Other symbols

? 200 ?A+B="; Can be used instead of PRINT. Consequently, statement number 200
A+B and 210 are the same.

210 PRINT “A+B
="iA+B

$ 220 A=X:B=Xt2 A symbol to express punctuation of the command statement; used in
:?2A,B multiple commands. There are 3 command statements used in the

statement number 220 multiple command.

. 230 PRINT’’AB"; Executes PRINT continuously. As a result line number 230, ““ABC-

“CD""; ‘EF’ DEF”? is displayed on the screen continuously, with no space.

240 INPUT’’X =""; Displays “‘X="" on screen; awaits data key input of string variable

x$ xs.

’ 250 PRINT’’AB"’, Executes PRINT with tabulation. For statement number 250, first AB

“CD! Ee? is displayed on the screen, then CD is displayed in the position 10

characters to the right of A, and then E is displayed in the position

10 characters to the right of C.

300 DIM A(20), An example used in punctuation of a variable.
BS$(3,6)

chee 330 B$ ="‘MZ- “* indicates a string content
700°"

$ 340 C$="ABC”’ Indicates a string variable.
+CHRS$(3)

500 LIMIT $BFFF Indicates hexadecimal number.

. 550 S=SIN The approximate value of pi (3.1415927) is expressed by m.
(X * #/180)

9-12

Appendixes

Appendix A_ Display Control in the MZ-800 Mode

(1) Graphics memory
The standard MZ-800 supports a display screen of 320 x 200 dots in 4 colours selected from a possible

16 colours, or a monochrome display screen of 640 x 200 dots.

By installing the optional graphics memory (MZ-1R25), the display capability is improved so that a

display screen of 320 x 200 dots can be displayed in 16 colours or a screen of 640 x 200 dots can

be displayed in 4 colours selected from a possible 16 colours.

(2) 40-column mode and 80-column mode (Character display)

The number of character columns per line can be switched between 40 and 80 characters with the INIT

command,

(3) Display modes (Graphics display)
The resolution and number of colours which can be displayed at any one time differs according to

the display mode. The MZ-800’s display modes are as follows,

Mode | Resolution [Characters per line, Colours

1 | 320 x 200 dots “0 | 4 colours

2 | 320 x 200 dots 16 colours

Foreground and back-
ground colours

3 640 x 200 dots

80
4 |640 x 200 dots 4 colours

Modes 2 and 4 can be used only when the optional graphic memory is installed. The graphics display

mode is set by the Mn parameter of the INIT command.

For exmaple:

INIT “*CRT:M1""..
INIT “CRT:M2"’..

. Sets mode 1.

- Sets mode 2.

(4) Colour palette

The colours which can be displayed at one time are selected from the colour palette. The colour palette

allows the selection of 4 colours from a possible 16 colours. The 16 colours which can be displayed

are listed below along with their colour codes.

A-2

Colour code Colour

0 Black
1 Blue
2 Red
3 Magenta
4 Green
a Cyan
6 Yellow
7 White
8 Gray
9 Light blue
10 Light red
ll Light magenta
12 Light green
13 Light cyan
14 Light yellow
15 Light white

| (high brightness white)

In mode 1 or mode 4, palette codes 0 to 3 are used. The initial settings of colour code assignments

to the palette codes are as shown below.

[Palette code | Colour code (colour)
| 0 0 (black)

1 1 (blue)
2 2 (red)

; 3 15 (light white)

In mode 3, palette codes 0 and 1 are used and the initial settings of colour code assignments are as follows.

Palette code | Colour code (colour)

0 0 (black)
1 15 (light white)

Colour code assignments to the palette codes can be changed with the PAL command.

Ex)

PAL 0,4 .. Assigns colour code 4 (green) to palette code 0.

PAL 2,7 .. Assigns colour code 7 (white) to palette code 2.

A-3

(5) Palette usage in mode 2

In mode 2, the initial colour code assignments to the palette codes are as follows.

Palette code | Colour code (colour)

0 0 (black)

1 1 (blue)

2 2 (red)
3 3 (magenta)

4 4 (green)

5 5 (cyan)
6 6 (yellow)

7 7 (white)

8 8 (gray)

9 9 (light blue)

10 10 (light red)
11 11 (light magenta)

12 12 (light green)

13 13 (light cyan)

14 14 (light yellow)
15 15 (light white)

Use of the palette in mode 2 is more complicated. In mode 2, palette codes 0 to 15 are used and they
are divided into four blocks as follows.

Palette block No. | 0 1 2 3
Palette code [0t03 | 4to7 |8to 11 [12 to 15

The initial setting of the palette block number is 0 and the initial settings of the colour code assign-
ments to the palette codes are as follows.

| Palette code | Colour code (colour) |
0 (black)
1 (blue)
2 (red)
3 (magenta) weno

The palette block number can be changed by the INIT command.

Ex)

INIT ‘‘CRT:B1'' — Changes the palette block number to 1.

The numbers belonging to the current palette block can be used as the palette codes in commands and

statements. Some commands and statements have a parameter which specifies a palette code or colour

code. The numbers belonging to the current palette block number are recognized as the palette codes,

while the other numbers are recognized as the colour codes.

The following example will help you understand the above explanation.

A-4

_——

10 INIT “‘CRT:M2,B1'" — Mode 2, palette block No. =1

20 PAL 4,12 — Assigns colour code 12 to palette code 4.

30 PAL 5,10 — Assigns colour code 10 to palette code 5.

40 PAL 6,8 — Assigns colour code 8 to palette code 6.

50 PAL 7,6 — Assigns colour code 6 to palette code 7.

After executing the above program,

LINE [5,0] 10,20,100,50

draws a line in light red. In this case, the first parameter is recognized we palette code.

LINE [1,0] 10,20,100,50

Draws the same line in blue. In this case, the first parameter is recognized as a colour code.

INIT “‘CRT:BO"’

If the above command is executed after execution of the above program, the result is different.

LINE [5,0] 10,20,100,50

Draws the line in cyan. In this case, the first parameter is recognized as a colour code.

LINE [1,0] 10,20,100,50

Draws the line in blue. In this case, the first parameter is recognized as a palette code. When INIT

“CRT:BO”’ is executed, the palette codes which can be set are changed as shown below.

The initial settings of the colour code assignments are assumed.

Palette code Palette code

5 0

6 INIT ‘‘CRT:B0" 1

i ———- 2

8 3

(6) Restoring initial settings

Executing the INIT statement to set a new display mode restores the initial settings of the colour code.

Executing the INIT statement to set a new palette block in the 16-colour mode also restores the initial

settings.

(7) Logical summing of colours
Some graphic statements such as COLOR, SET and LINE use the ‘‘mode’’ parameter.

When the mode parameter is specified as 0, the resultant colour is specified by the palette code parameter.

When the mode parameter is specified as 1, a logical OR operation is performed between the existing

palette code for a dot (on the screen) and the new specified palette code for the same dot, to produce

the resultant colour. For example, if the existing palette code for a dot at (50,50) is 2 and the new

specified palette code is 1, the resultant palette code is 3.

0010 (binary for 2) OR 0001 (binary for 1) - 0011 (binary for 3)

A-S

roe? gf

A table of codes logically ORed is shown below.

0123 45 67 8 91011 12131415

0}0 123 4 5 6 7 8 9101112131415

PA) a. b 83 HS PR Oma sI31595
22) 2 3 2 3 6 7 6 710111011 1415 1415
a3 3 SS 77 F PABA SSS ss

6414 5 67 4 5 6 712131415 12 13 1415

55°35 7°72 SS 7 713 13:15:15:13 13 15 15
6/6 76 7 6 7 6 714151415 14 15 1415

ET POE TOT PF RASASNS TS:15:151515

8) 8 9101112131415 8 91011 12131415
9) 9 9111113131515 9 9111113 131515
10}10 11 10 11 14.15 14.15 10 11 10 11 14 15 1415
1N}11 11 11 11 15 15 15 15 11 11 11 11 15 15 15 15

12/12 13 14 15 12 13 14. 15 12 13 14.15 12 13 1415
13]13 13 15 15 13 13 15 15 13 13 15 15 13 13 15 15
14/14 15 14.15 14.15 14 15 14.15 1415 1415 14.15

15}15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15

This logical operation does not however apply to the RESET and BLINE statements. For these two

statements, the resultant colour is specified by the colour code given by

{(No. of colours which can be specified in the current colour display mode) — 1 — (specified palette

code)} when the mode parameter is 0. For example, when the colour display mode is mode 1 in which

a maximum of 4 colours can be specified, specifying colour palette code 1 results in colour palette

code 2 as follows.

4-1-1=2

When the mode parameter is 1, the resultant palette code is given by the logical OR of the previous

palette code and {(No. of colours which can be specified in the current colour display mode) minus

1 minus (specified palette code)}. For example, specifying palette code 1 when the previous palette

code is 2 results in palette code 2 as follows.

20R2>2

A6

Appendix B_ Programmable Sound Generator

The MZ-800 has a built-in programmable sound generator (PSG) which makes it possible to generate

3-tone chords over 6 octaves. The PSG is an SN76489AN IC.

The PSG can be controlled by sending data to I/O port address $F2.

(1) Description of the PSG
The SN76489AN IC has eight internal registers, and controls three tone generators and one noise

generator.

Block diagram

Attenuator

Attenui
060+
05
D4
03 amplitie > t

i
Output | Tone generator 2 :
amplifier,

The internal registers required can be selected by setting bits D4 to D6 in the Ist byte of the output

data. The function of each register is shown below.

D6 | DS | D4] Function |
Frequency of tone 0
Sound volume of tone 0
Frequency of tone 1
Sound volume of tone 1
Frequency of tone 2
Sound volume of tone 2
Noise control
Noise volume eee -ooco -r coco Hon-cHoHo

(2) Setting the tone frequency
The tone frequency is set with the following 2-bytes of data.

! Ist by

} oe D7|D6|D5s|D4|D3|D2|D1|DO
1 | Reg. select | Frequency 1

(lower four bits)

2nd byte

[27]0e[0s.nelps[p2[o11 be
x | 0 Frequency (high six bits)

Frequency = (3.55 x 10°)/(32 x n) kHz

n is a 10-bit binary number represented by DO to D3 of the Ist byte and DO to DS of the 2nd byte.

(3) Noise generation

Synchronous noise or white noise can be generated by outputting the following 1-byte data to the 1/O
port.

[p76 ps] p4/pa{p2 {D1 bo|
[1 |Reg. select | x | | [Frequency

Noise type

* The noise type is specified by D2.

0: Synchronous noise wane?

1: White noise Ct, 4 a>
* The noise frequency is set by DO and D1. The noise frequencies which can be set by DO and

D1 are as follows.

(D1 DO| Frequency

0 | 0 | 6.93 (=3.55 x 103/512) kHz
0 | 1] 3.47 (=3.55 x 10°/1024) kHz
1 | 0} 1.73 (=3.55 x 10°/2048) kHz :
1 | 1 | Same as that for the sound generated by tone generator #3. e :

cick JU
ail is lif

Synchronous
, noise | neers! Ea;
HULP (Duty 6.25%)

* When white noise is specified, the output waveform is composed of random patterns and a sound

with virtually the same spectrum as white noise is generated.

* When noise modes 0, 1, 1 are specified, the frequency is given by the following formula and a low

pulse tone can be generated.

f = N/32 x n x 16

* Ifyou specify tone 2 output in the noise mode specification, you must turn the output of tone 2 off.

(4) Setting tone volume

D7 | D6 | Ds | D4 | D3 | D2| D1 | DO

Reg. select Attenuation

The tone volume is altered with attenuation.

o-o-c-OoR- Conn OoOn-

e
c
c
o
o
o
e
r
e
e
e

Attenuation (4B)| [D3]D2] D1 | D0 Attenuation (dB)|

|
D3| D2] D1] DO

0
2
4

6
8

10
12
14

0
1
0
1
0
1
0
1 conn OOne

c
o
o
o
n
e
n
e

coooocecso

Ad

Appendix C_ Reserved Words

ABS

AND
ASC

ATN
AUTO
AXIS
BLINE

BOOT
BOX
BYE

CHAIN

CHR$
CIRCLE
CLOSE #
CLR

CLS
COLOR
CONSOLE
CONT

cos
CSRH
CSRV

CURSOR
DATA
DEF

DEFAULT
DELETE
DIM
DIR
ELSE

END

EOF
ERL
ERN

ERROR

EXP
FN

FOR
GET

GOSUB
GOTO
GPRINT

HCOPY
HSET

IF
INIT
INP@
INPUT

INPUT #

INT
KEY
KEYLIST
KILL#

LABEL

LEFTS
LEN

LET
LIMIT
LINE
LIST

LIST/P
LN
LOAD

LOG
MERGE

MID$
MUSIC
NEW

NEXT
NOISE

A-10

re -@

Sg Re ee ee

NOT

OFF
ON

OR
OUT@

PAGE
PAI

PAINT
PAL

PATTERN
PCIRCLE

PCOLOR
PEEK

PHOME

. PLINE
PLOT
PMODE
PMOVE

POINT
POKE
POSH

POSITION
POSV

PRINT

PRINT #

PSKIP
PTEST

RAD
READ

REM

RENAME
RENUM
RESET

RESTORE

RESUME
RETURN

RIGHTS
RLINE
RMOVE
RND
ROPEN #
RUN
SAVE
SEARCH
SEARCH/P
SET
SGN
SIN
SIZE
SOUND
SPC
SQR
STICK
STOP
STRS
STRIG
SYMBOL
TAB
TAN
TEMPO
THEN
TIS
TROFF
TRON
USING
USR
VAL
VERIFY
WAIT
WOPEN#
XOR

A-ll

Appendix D Console Control Codes

If the MZ-800's character set, some of the codes are used to control the operation of the computer

as shown below. These control codes can be input to the computer through the keyboard or by using

the PRINT statement (indicated with an asterisk (*) in the code column).

Control code table

Code (Dec.) Key operation Function

5 [CTRL | + (E] Causes the character keys to input lowercase letters.

6 (Cerri] + fF] Causes the character keys to input uppercase letters.

13 (*) [CTRL | + [M] Causes a carriage return.

16 (*) cri | + [Pp] Deletes the character at the position to the left of the
cursor position.

17 (*) CTRL | + (el Moves the cursor down one line. O 5

18 (*) CTRL | + Ik] Moves the cursor up one line. | t

19 (*) cTrt |] + [Ss] Moves the cursor right one character position.

20 (*) CTRL | + ca Moves the cursor left one character position. f)

21 (*) Cerrec) + (v] Moves the cursor to the home position.

22 (*) cTre | + [v] Clears the screen. [CLR |

23 (*) CTRL | + [w] Places the keyboard in the graphics mode.

24 (*) CTRL | + LX. Inserts a space at the cursor position.

25 (*) + Ly] Places the keyboard in the normal mode.

A-12

ro

Appendix E_ Restrictions on Using File I/O Commands
and Statements

The file 1/O commands and statements cannot be used for all file devices. The table below shows the
restrictions on some of these devices.

ma CMT: RAM: CRT: LPT: RSI: and RS2:
mayan i icone recorder) |(RAM file board) (Display) (Printer) (RS-232C)

INIT x te) @} ie} (e)

DEFAULT 12) ° 1@) ie) 1e)
DIR x ie) x x
RUN te) 1e} x x x
LOAD fe) fe) x x x
SAVE @} 1@) x x x
DELETE x 12) x x x

RENAME x oO x x x
CHAIN 12) 1@) x x x
MERGE fe) fe) x x x
WOPEN # oO 12) x x 2}
PRINT# 12) 12) x x ie}

ROPEN# 12) O° x x ie}
INPUT # 1@) ie) x vs ie)

CLOSE # te) x x ie}

, KILL # oO (e) x Pas ie)

O: Can be used.

x: Cannot be used.

} Further, for CMT:, and RS1: and RS2, only one file can be opened at any one time.

A-13

Appendix F Monitor Subroutines

The following subroutines are used by the ROM Monitor (9Z-504M). Each subroutine name symboli-

cally represents the function of the corresponding subroutine. These subroutines can be called from

user programs.

Registers saved are those whose contents are restored when control is returned to the calling program.

The contents of other registers are changed by execution of the subroutine.

Name and entry point (hex.) Function Registers saved

CALL LETNL Moves the cursor to the beginning of the next line. All except AF
(0006)

CALL PRNTS Displays a space at the cursor position. All except AF
(000C) ||

CALL PRNTS Displays the character corresponding to the ASCII code All except AF
(0012) stored in the ACC at the cursor position. See Appendix J

for the ASCII codes. No character is displayed when code
OD (carriage return) or codes 11 to 16 (the cursor control
codes) are entered, but the corresponding function is still
performed (a carriage return for 0D and cursor movement
for 11 to 16).

CALL MSG Displays a message, starting at the position of the cursor. All registers
(0015) The starting address of the area in which the message is

stored must be loaded into the DE register before calling
this subroutine, and the message must end with a carriage
return code (OD).
The carriage return is not executed.
The cursor is moved if any cursor control codes (11 to 16)
are included in the message.

CALL BELL Briefly sounds tone of la (about 880 Hz). All except AF
(003E)

CALL MELDY Plays a tune according to the music data stored in the All except AF
(0030) memory area starting at the address in the DE register.

The music data must be in the same format as that for the
MUSIC statement of the BASIC, and must end with 0D or
cs.
When the tune is completed, control is returned to the call-
ing program with the C flag set to 0. When play is inter-
rupted with the key. Control is returned with the
C flag set to 1.

CALL XTEMP Sets the music tempo according to the tempo data stored All registers
(0041) in the accumulator (ACC).

ACC + O1 Slowest speed
ACC + 04 — Middle speed
ACC + 07 Highest speed

Note that the data in the accumulator is not the ASCII
codes for | to 7 but the binary codes.

CALL MSTA Generates a continuous sound of the specified frequency. BC and DE
(0044) The frequency is given by the following equation

freq. = 895 kHz/nn’.
Here, nn’ is a 2-byte number stored in addresses 11A1 and
11A2 (n in 11A2 and n’ in 11A1) =!

Name and entry point (hex.) Function Registers saved]

CALL MSTP
(0047)

Stops the sound generated with the CALL MSTA
subroutine.

All except AF

CALL TIMST
(0033)

Sets and starts the built-in clock. The registers must be set
as follows before this routine is called.
ACC + 0 (AM), ACC + 1 (PM)
DE + 4-digit hexadecimal number representing the time

in seconds,

CALL TIMRD
(003B)

Reads the built-in clock and returns the time as follows.
ACC + 0 (AM), ACC = 1 (PM)
DE + 4-digit hexadecimal number representing the time

in seconds.

CALL BRKEY
(001)

Checks whether the [S and [BREAK] keys are both
being pressed. The Z flag is set when they are being pressed
simultaneously; otherwise, it is reset.

CALL GETL
(0003)

Reads one line of data from the keyboard and stores it in
the memory area starting at the address in the DE register.
This routine stops reading data when the key is pressed,
then adds a carraige return code (OD) to the end of the data
read.
A maximum of 80 characters (including the carriage return
code) can be enered in one line.
Characters keyed in are echoed back to the display. Cursor
control codes can be included in the line.
When the and keys are pressed simultane-
ously, the BREAK code is stored at the address indicated
by the DE register and a carriage return code is sotored in
the following address.

CALL GETKY
(001B)

Special key read with
GETKY

T Reads a character code (ASCII) from the keyboard.
If no key is pressed, control is returned to the calling pro-
gram with 00 set in ACC.
No provision is made to avoid data read errors due to key
bounce, and characters entered are not echoed back to the
display.
When any of the special keys (such as or [CR]) are
pressed, this subroutine returns a code to the ACC which is
different to the corresponding ASCII code as shown below.
Here, display codes are used to address characters stored in
the character generator, and are different from the ASCII
codes.

Special key Code loaded in ACC} _ Display code

60 c7

61 c8
62 co
64 CB
66 cD
il cl
12 c2
13 C3
14 C4
15 cs
16 C6

All except AF

All except AF
and DE

All except AF

All registers

All except AF

Name and entry point (hex.) Function Registers saved

CALL ASC
(03DA)

Loads the ASCII character corresponding to the hex-
adecimal number represented by the lower 4 bits of data in
ACC,

All except AF

CALL HEX
(03F9)

Converts the 8 data bits stored in the ACC into a hex-
adecimla number (assuming that the data is an ASCII
character), then loads the hexadecimal number in the lower
4 bits of ACC. The C flag is set to 0 when a hexadecimal
number is loaded in ACC; otherwise, it is set to 1.

CALL HLHEX
(0410)

CALL 2HEX
(041F)

CALL ??KEY
(09B3)

CALL ?ADCN
(OBB9)

All except AF

Converts a string of 4 ASCII characters into a hexadecimal
number and loads it in the HL register. The call and return
conditions are as follows.

DE + Starting address of the memory area which con-
tains the ASCII character string.

(eg. mg apr way

CALL HLHEX ‘_DE
CF=0 HL+hexadecimal number (e.g., HL =31ASn)
CF=1 The contents of HL are not guarenteed.

5

All except AF
and HL

Converts a string of 2 ASCII characters into a hexadecimal
number and loads it into the ACC. The call and return con-
ditions are as follows.
DE + Starting address of the memory area which con-

tains the ASCII character string.
(eg. a “A” +)

CALL 2HEX DE
CF=0 ACC+hexadecimal number (e.g., ACC =3An)
CF=1 The contents of the ACC are not guaranteed.

All except AF
and DE

Blinks the cursor to prompt for key input. When a key is
pressed, the corresponding display code is loaded into the
ACC and control is returned to the calling program.

Ee
All except AF

Converts ASCII codes into display codes. The calli and
return conditions are as follows. © «
ACC + ASCII code ome nla
CALL ?ADCN sem erat
ACC + Display code

All except AF

CALL ?7DACN
(OBCE)

CALL ?BLNK
(ODA6)

CALL ?DPCT
(ODDC)

Converts display codes into ASCII codes. The call and
return conditions are as follows.
ACC + Display codes
CALL ?DACN
ACC + ASCII code

All except AF

Detects the vertical blanking period. Control is returned to
the calling program when the vertical blanking period is
entered.

All registers

Controls display as follows.

ACC Control ACC} Control

Scrolling C6n | Same as the
Same as the key. | C7#| Same as the
Same as the C8u | Same as the [1
Same as the key. | C9n| Same as the
Same as the [=] key, [ALPHA] key.
Same as the CDu| Same as the [CR] key.
HOME | key.

Clu
C2
C3n
C4u
CSu

ther

ma a <

CALL ?POINT
(OFB1)

Loads the current cursor location into the HL register. The
return conditions are as follows.
CALL ?POINT
HL + Cursor location (binary)

All registers

All except
AF and HL

A-16

weed :

Appendix G Making Backup Copy of the BASIC
Interpreter

It is possible that you may accidentally damage the tape which contains the BASIC interpreter. When

this happens, you cannot use the computer. To avoid this, make a copy of the BASIC interpreter.

After making the backup copy, store the original tape in a safe place and use the backup copy for
daily use.

Backup procedures are as follows.

1) Prepare a new cassette tape.

2) Turn on the MZ-800 and press the |M | key to start the monitor.

3) Load the tape which contains the BASIC interpreter into the data recorder, then enter the follow-

ing monitor command.

* GE807 |CR
4) When ‘*#PLAY” is displayed, press the | PLAY | button of the data recorder to read the BASIC

interpreter into memory.

5) When the prompt (*) appears, replace the tape with the new one and enter the following monitor

command,

*GEB80A |CR |

6) When ‘“ £RECORD.PLAY” is dislayed, press the button of the data recorder to write
the BASIC interpreter to the new tape.

7) When the prompt (*) appears, rewind the tape. Then, enter the following monitor command.

*GE80D |CR |
8) When ‘‘# PLAY” is displayed, press the button to verify the tape contents.

9) When the message ‘CHECK SUM ER.” is displayed, repeat steps 3 to 8.

When the message “‘OK.”’ is displayed, copying is completed.

A-17

Appendix H Optional Colour Plotter-Printer MZ-1P16

Paper holder (left) Paper shaft Paper holder (right)
/
/

Paper guide

Printer cover Paper cutter

Reset switch Paper feed key

Initializes the printer
Pen change switch

(viewed from the top)

Paper inlet

(viewed from the rear)

Note:

A protective sheet is inserted in printer to protect the printer mechanism. Remove the sheet by pressing

the paper feed key () before using the printer.

= Loading roll paper

1. Remove the printer cover,

2. Cut the end of roll paper squarely and insert the paper into the paper inlet. (Do not fold or wrinkle

the end of the paper when doing this.)

3. Turn on the MZ-800’s power switch and press the (paper feed) key to feed the paper unitl the

leading edge exposed 3 to 5 cm above the outlet.

4, Insert the paper shaft into the paper roll and mount it to the paper holders.

5. Refit the printer cover so that the end of paper comes out through the paper cutter.

* To remove the roll from the printer for replacement, cut the paper squarely at the paper inlet and

press the ® key.

Insert paper into the Press the ® key to 2 Replace the printer

paper inlet. feed paper. cover.

= Roll paper for the plotter printer is available from your nearest SHARP dealer. Do
not use paper other than that specified.

The roll length is 23 to 25 meteres, and the maximum roll which can be loaded is ¢ 50 mm. The paper

will not feed properly if a roll of greater diameter is used, resulting in poor printer quality.

= Installing/replaceing pens

1. Remove the priner cover and press the PEN CHANGE switch with a ball-point pen or similar ob-

ject; this causes the pen holder to move to the right side of the printer for pen replacement.

2. Press the pen eject lever to eject the pen which is at the top of the holder. When doing this, rest

your finger lightly on top of the pen while pushing the eject lever to prevent the pen from falling

inside the priter.

. Insert a new pen.

. Press the PEN CHANGE switch again to bring another pen to the top of the holder.

. Replace all four pens (black, blue, green and red) in the same manner. When finished, press the

RESET switch.

Execute the BASIC PTEST command to confirm that all colours are printed correctly.

wp w

A-19

Pen position Pe
detection magnet Pa

Pen holder

Green
Red

—

es Pen eject lever

= Storing pens

Install the pens only when the printer is used.

When the printer is not used, remove the pens and cap them, then keep them in the refill container;
otherwise, they will be dried up.

-co- a>
—_S——

| oan cap
| Pin Pen cap

Refill container

Note:

Because the ball-point pens use water-soluble ink and the ink may blur if the printed paper becomes
wet, the paper should be handled with care.

= Replacements for the printer pens (ball-point pens) can be purchased at the same
dealer you purchased the printer from.

© EA-850B (black: 4 pens)

* EA-850C (black, blue, green, red: 4 pens, 1 of each colour)

m Self-test

The plotter-printer has the self-test function. Press and hold the (™§) (paper feed) key and turn on the

MZ-800 power, and the self-test starts. It is recommended to perform the self-test after pens have been
replace.

Note:

Be sure to disconnect the interface cable when performing the self-test.

A-20

Appendix I Colour Plotter-Printer Control Codes

1 Control codes used in the text mode

© Text code ($01)

Places the printer in the text mode.

© Graphic Code ($02) usissssisccsensinsssnaonpscoceseasavascacsesens Same as the BASIC PMODE statement.

Places the printer in the graphics mode.

¢ Line up ($03) Same as the BASIC PSKIP statement.

Moves the paper one line in the reverse direction. The line counter is decremented by 1.

SUPER PERE SOA) fs ca csncsepaassuens stasis capapatasvesehopseciipianieoede Same as the BASIC PTEST statement.

Writes the following patterns to start ink flowing from the pens, then sets scale = 1 (40 chr/line),

colour =0.

Black Blue Green Red

| [
* Reduction scale ($09) + ($09) + ($09)

Reduces the scale from 1 to 0 (80 chr/line).

© Reduction cancel ($09) + ($09) + ($0B)

Enlarges the scale from 0 to 1 (40 chr/line).

* Line counter set ($09) + ($09) + (ASCII)2 + (ASCII); + (ASCII) + ($0D)

Same as the BASIC PAGE statement.
Specifi es the number of lines per page as indicated by the 3 ASCII bytes code. The maximum num-

ber of lines per page is 255, Automatically set to 66 when the power is turned on or the system is reset.

SUDTGB SCAN SOAD, siasscsavacnanaia carsnsinsecussunaupsaenntaniagsansensd Same as the BASIC PSKIP statement.
Moves the paper one line in the forward direction. The line counter is incremented by 1.

* Magnify scale ($0B)

Enlarges the scale from 2 to 1. (26 chr/line)

* Magnify scale ($0C)

Reduces the scale from 2 to 1.

* Carriage return ($0D)

Moves the carriage to the left side of the paper.

* Back space ($0E)

Moves the carriage one column to the left. This code is ignored when the carriage is at the left side

of the paper.

© Form feed ($0F)

Moves the paper to the beginning of the next page and resets the line counter to 0.

Next colour ($1D)

Changes the pen to the next colour.

A-21

2 Character scale

© The character scale is automatically set to 1 (40 chr/line) when the power is turned on. Afterwards,

it can be changed by control codes and commands.
© In the graphics mode, the scale can be changed within the range 0 to 63.

© The scale is set to 1 when the mode is switched from graphics to text.

3 Graphics mode commands

Command type

In the graphics mode, the computer can control the printer with the following commands.

The words in parentheses are BASIC statements which have the same functions as the graphics mode

commands.

Command name Format Function

LINE TYPE Lp (p=0 to 15) Specifies the type of line (solid or dotted) and the
dot pitch.
p=0: solid line, p=1 to 15 : dotted line

[CALL INITIALIZE

HOME (PHONE)

A Places the printer in the text mode.

H Lifts the pen and returns it to the origin (home
position).

INITIALIZE (HSET) I Sets the current pen location as the origin (x=0,
y=0).

DRAW (LINE) Dx, y, ..., xm, yn

(-999 sx, ys999)

RELATIVE DRAW
(RLINE)

JAx, Ay, ..., Axn, Ayn
(-—999s Ax, Ay =999)

MOVE (MOVE) Mx, y
(-999sx, ys999)

RELATIVE MOVE

Draws lines from the current pen location to
coordinates (xi, yi), then to coordinates (x2, y2),
and so forth.

Draws lines from the current pen location to rela-
tive coordinates (Ax;, Ay;), then to relative coor-
dinates (Ax2, Ay2) and so forth.

Lifts the pen and moves it to coordinates (x, y).

RAx, Ay Lifts the pen and moves it to coordinates

(RMOVE) | (—999<Ax, Ay=999) (Ax, Ay).

COLOR CHANGE Cn (n=0 to 3) Changes the pen colour to n.
(PCOLOR)

SCALE SET Sn (n=0 to 63) Specifies the character scale.

ALPHA ROTATE Qn (n= 0 to 3) Specifies the direction in which characters are
printed.

PRINT

AXIS (AXIS)

Peicacs ... cn (n=) Prints characters.

Xp, q, tr (p=0 or 1)
(q= —999 to 999)
(r=1 to 255)

Draws an X axis when p=1 and a Y axis when
p=. q specifies the scale pitch and r specifies the
number of scale marks to be drawn.

A-22

Command format

There are 5 types of command formats as shown below.

1, Command character only (without parameters)

Ay HT

2. Command character plus one parameter

L,C,S,Q
3. Command character plus pairs of parameters

D,J,M,R
«| is used to separater parameters, and a CR code is used to end the parameter list.

4, Command plus character string

P
The character string is terminated with a CR code.

5. Command plus three parameters

x

** |” is used to separate parameters.

Parameter specification

1, Leading blanks are ignored. °

2. Any number preceded by ‘‘—”’ is treated as a negtive number.

3. If the number of digits of a number exceeds 3, only the lower 3 digits are effective.
4, Each parameter is ended with “‘ , ”’ or a CR code. If other than numbers are included in a parameter,

subsequent characters are ignored until a comma or CR codde is detected.

Example) Duu- 135, 21, sexe

an
Abbreviated formats

1. Any command can be followed by a one-character command without having to enter a CR code.

E.g) ‘‘HD100, 200” CR is valid and is the same as ‘‘H’’ CR ‘D100, 200"’ CR.
2. Any command can be followed by a command with one parameter by separating them with a com-

ma“, ”,

E.g) “LO, S1, QO, C1, D100, 200’ CR is valid.
3. A command with pairs of parameters must be terminated with a CR code.

Data change due to mode switching

The following data changes when the printer is switched from the graphics mode to the text mode.

* X and Y coordiantes
Y is set to 0 and the origin is placed at the left side of the printable area.

* Direction of characters

Q is set to 0.

© Character scale
Character scale is set to 1.

© The line type setting is not affected.

A-23

Appendix J Code Tables

= ASCII code table

MSD is an abbreviation for most significant digit, and represents the upper 4 bits of each code, LSD
is an abbreviation for least significant digit, and represents the lower 4 bits of each code. Codes 11
to 164 are cursor control codes. For example, executing CALL PRINT (a monitor subroutine) with
15u loaded into the ACC returns the cursor to the home position. (** | H | *’ is not displayed.)

LSD 0000/0001 Cao 011 0100/0101 Stolen tt 100 1001/1010 1011/1100 1101 tio}

om | | eee ooe@eloclslo
10001 AQ Ho Ba) Cole
2 0010 By) 2)(8)(R| LF) Ole! (z) 0) mano
a pont E\/#)[3) (Cc) s/ 4 FAS wimMiOgele
4 0100 Ei$)/4)/0)/T)K RIN sOO AD
a wt Ea) 26)|(5)(E)(U) >|) uA

ai Tt
6 ono (@)|&)\\6)\(F VI ¥ IP [t UNSW x

7 om CN7iGiwie|iG eg) Silo] om pbie
8 1000 ().8)[H)[x} © | Us) N)(h) (6) a Of)
: we LD J} Lj}) fd] | LA) |) (A) 7) | | fi) |
Ye | |PR)C Ce) 2) PRICY) (6) (#)(8)) OCS)

B 1011 aoleciale]|[x]|[w]|[a]] 0B) C4) 20/8)

© 1100 CLO) IN) Zi) e304) 0) 9) 80/2)
D 1101 ey FISIMIDIKI AIO a) y) 3) EIN)

a [J]]}(N} Ce) 48} 79D) (P) (8) II
|? in A) C2) lO} le) el 1) fe} CF) SO) oe}

= ASCII code table

When using the colour plotter-printer, graphics characters other than those shown above cannot be

printed, but the curresponding hexadecimal code is printed in a different pen colour.

a
g
]

|

[
R
I

o
s

=

N

P
T

=
q
o
g

Pe
X

E
E
S

l
S

C
e
a

i
c
e

+ | OFC

Ix
fP
al
ca
lo

<
|

a

SS lets OyLWILL|CS| TI ee. IS

IIFNICOIO)D)

®
2 Je
SN\4]

|]
|ANIO-

+b

Ne

al

\

r-
)

Vv

S
R
E

a

r

o
o

a

<

a

a
ke

A-25

Appendix K Error Messages Generated by the Monitor

[Cassette]

CMT: Loading error

An error occurred during data loading.

CHECK SUM ER.

An error was detected in the check sum for the loaded file.

Make ready CMT:

An attempt was made to access data before the | PLAY | button was pressed, or when no cassette

was inserted in the data recorder.

[MZ disk]

QD: Loading error

An error occurred during data loading.

QD: File mode error

The type of the starting file on the disk set in the drive-at the power-on sequence was not OBJ.

QD: File not found é

The specified OBJ file was not found.

QD: Hard err

A hardware error occurred.

Already exist err

A filename which is the same as that specified for the S command had been already cataloged

—- on the disk.

QD: Write protect

An attempt was made to access a write-protected disk.

QD: Not ready

An attempt was made to access data for the disk when the disk holder was opened or when no

disk was inserted in the drive.

QD: No file space err

Insufficient free space was left when a file was saved by the S command.

QD: Unformat err

The disk to be accessed was unformatted.

QD: Bad disk err

The disk to be accessed was defective.

Make ready QD

An attempt was made to access data when the disk holder was opened or when no disk was set

in the drive.

[Floppy Disk]
FD: Loading error

An error occurred during data loading.

FD: Not master

The disk set in drive-1 was not master disk.

Make ready FD:

An attempt was made to access data when the lever was not locked or when no disk was set

in the drive.

Appendix L_ Error Messages Generated by BASIC

When an error occurs during BASIC operations, either of the following error messages (1) and (2)

is displayed on the screen.

(1) (Type of error) error

(2) (Type of error) error in (Line number)

Message (1) is generated when a command is entered from the keyboard, while message (2) is generated

during program execution.

Error No. Message Displayed Description

1 Syntax error A statement does not conform to the syntax rules of BASIC,

Overflow error The magnitude of a numeric value exceeds the limits.

Illegal data error A numeric value or variable which does not conform to the nu-
meric rules of BASIC was encountered.

4 Type mismatch error The types of data and variable do not match,

5 String length error The number of characters included in a string exceeds 255.

6 Memory capacity error Insufficient memory space is available for the processing re-

quired. iE
we Array def. error An array was to be expanded or undefined array name was

specified.

8 Line-length error The length of a line exceeds the limits.

10 GOSUB nesting error The number of nested GOSUB statements exceeds 15.

11 FOR-NEXT error The number of nested FOR-NEXT statements exceeds 15.

12 DEF FN nesting error The number of nested function definitions using the DEF FN

statement exceeds 6.

13 NEXT error A NEXT statement was encountered without a corresponding

FOR statement.
7 |

14 RETURN error A RETURN statement was encountered without a corresponding
GOSUB statement.

15 Un def. Function error | A call was made to an undefined function.

16 Un def. line error A non-existent line number or label was specified.

17 Can’t CONT error Program continuation with a CONT statement is impossible.

18 Memory protection error | An attempt was made to write data in the area reserved for the
BASIC interpreter.

A-27

Error No. Message Displayed Description

19 Instruction error A direct command was included in the program or an indirect

statement was used in the direct mode.

20 Can't RESUME error A RESUME statement cannot be used.

RESUME error An attempt was made to execute a RESUME statement even
though no error occurred.

22 PAL error Palette block number is out of range.

24 READ error TA READ statement was encountered without a corresponding
DATA statement.

29 Framing error Framing error

30 Overrun error Overrun error

31 Parity error Parity error

40 File not found error An attempt was made to access a non-existent file.

42 Already exist error An attempt was made to save a file under a filename which al-

ready existed.

43 Already open error An attempt was made to open a file already opened.

44 Not open error An attempt was made to access, CLOSE, or KILL a file without
opening it.

Write protect error An attempt was made to write data to a write-protected file.

51 Too many files error An attempt was made to store more than 32 files in the RAM file
board.

No file space error Free space for storing files is insufficient.

58 Dev, name error An invalid device name was specified.

Can't execute error An attempt was made to execute a statement for an invalid
device.

60 Illegal filename error An illegal filename was specified.

61 Illegal filemode error A file was accessed in an illegal mode.

— 63 Out of file error An end of file was encountered during a read operation of the

cassette.

64 Logical number error An error was detected in the logical number.

LPT: not ready error The printer is not connected or not on-line, or a malfunction has
occurred in the printer mechanism.

Dev. mode error An error was detected in the device mode.

| Unprintable error An error occurred which does not have a message.

| Check sum error An error was detected in check sum data.

A-28

Appendix M_ Index

CIRCLE.
CLOSE #
CLR.

CLS .

CONSOLE

CONT.

DEFAULT. 6-55
DELETE + 6-4,48
DIM... 6-30
DIR. 6-43

END... 6-13

EOF (#). 6-53
ERL. 5-5

ERN. 5-5
EXP 5-10

FOR ~NEXT. 6-14

A-29

GOSUB ~ RETURN...
GOTO....

GPRINT.

HCOPY .
HSET

IF ~ THEN
IF ~GOSUB..
IF ~GOTO.

KEY LIST .

KILL#...
LABEL ..

LEFT$

ON ERROR GOTO
ON ~GOSUB
ON~GOTO

POSITION.
POSV..
PRINT
PRINT #
PRINT/P ..

PRINT/P USING

PRINT USING.
PSKIP....
PTEST...

A-30

x s <c

RESTORE .

Appendix N_ Specifications

CPU Z80A-CPU

Clock 3.5469 MHz

Memory ROM 16K bytes

RAM _ 64K bytes
VRAM 16K bytes

Can be expanded to 32K bytes. (option)

Display I/F : RF, Video,

RGB
Graphic display : 320 x 200 dots

640 x 200 dots

: Cassette Standard audio cassette tape

Data transfer speed ; 1200 bits/sec.

Data transfer system ; SHARP PWM

Key layout ASCII standard main keyboard

Special function keys

Cursor control keys

Cassette tape deck control keys

Editing function Cursor control; up, down, left, right, home, clear

Deletion, insertion

Clock function Built-in

Power supply Local supply rating voltage

Temperature Operating temp; 10° to 35°C

Humidity 20% ~ 80% (no condensation)

Weight MZ-811; 4.0 kg
MZ-821; 4.3 kg

Dimensions Width : 440 mm
Depth : 305 mm

Height: 109 mm

Accessories Power cable Definable key lavel

Monitor cable Graphic key lavel

Owner’s manual

Cassette

This apparatus complies with requirements of BS 800 and EEC directive
82/499/EEC,

Dieses Gerat stimmt mit den Bedingungen der EG-Richtlinien 82/499/
EWG Uberein.

Cet appareil répond aux spécifications de la directive CCE 82/499/CCE.

Dit apparaat voldoet aan de vereiste EEG-reglementen 82/499/EEG.

Apparatet opfylder kravene i EF direktivet 82/499/EF.

Questo apparecchio é@ stato prodotto in conformita alle direttive CEE
82/499/CEE.

Printed in Japan
Gedruckt in Japan
Imprimé au Japon
‘Stampato in Giappone

©1984 SHARP CORPORATI
SHARP CORPORATION SC 2.24NTINSE1295AC;

OSAKA, JAPAN

