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Basic statistics
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In statistical mechanics, we consider quantum mechanical
systems in which particles like atoms and electrons have
different energy levels.

We want to know the probability that the particles are at each
level. We can use this information to calculate the population
at each level, the total energy of the system, the heat capacity,
etc.

Later on, we shall learn how to calculate this probability using
the Boltzmann distribution. Before that, we need to answer
one question:

Even if we know the probabilities at each level, particles are
often free to hop between levels. Would this not cause big
changes in energy of the system?

In order to answer this question, we investigate the example
where we only have 2 energy levels, and with equal probabilities.
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To use a familiar example, think of each particle as a coin and

each level as one side of the coin.

Suppose the coin is tossed 2 times. The possible outcomes are:

TT

HT

TH

HH

Let x be the number of heads. Let n be the total number of

outcomes.

Let P (x) be probability of getting x heads. This is given by

P (x) = x/n.

P (0) = 1/4

P (1) = 2/4

P (2) = 1/4
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Mean and standard deviation

Suppose we toss the coin n times and record the number of H.

Suppose we repeat this many times.

We would get a sample of data for x, e.g. {2, 0, 1, 3, 2, 2, 3,

0, ... }

In statistics, we are often interested in two numbers - the mean

and the standard deviation.

The mean is the simple average.

The standard deviation tells us how much the numbers in the

data deviate from the mean.
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If we know the probaility distribution P (x), we can also

calculate the mean and standard deviation without actually

tossing the coin.

The mean is given by

µ =
∑

xP (x).

The standard deviation is the root mean square of x− µ. So it

is essentially a kind of average of how much x deviates from µ.

It is given by

σ =

√∑
(x− µ)2P (x).
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When the standard deviation is small

The standard deviation is relevant to the idea of macrostates
that we want to develop.

We are particularly interested in what it means if the standard
deviation becomes very small.

Recall that the standard deviation is a measure of the average
deviation of x from the mean.

So if the standard deviation is small, it means that most of the
data is very close to the mean value.

If we look at a histogram of the data, it would look more
sharply peaked.
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The binomial distribution

Let p be probability of getting a Head, and q the probaility of

getting a Tail.

If we have a fair coin, then p = q = 1/2.

Suppose we toss a coin N times.

The probaility of getting x heads is given by the binomial

distribution:

P (x) =N CnpnqN−n.
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Mean and standard deviation

When we toss a coin N times, suppose that we get x heads.

When we toss N times again, we may get a different x.

The mean value of x is given by a sum over x, weighted by the

probabilities:

µ =
N∑
x=0

xP (x) = Np.

The standard deviation is given by:

σ =

√√√√√ N∑
x=0

(x− µ)2P (x) =
√
Npq.

Both formulae can be derived by substituting the binomial

distribution P (x) =N CnpnqN−n.
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Distribution of the number of Heads

Lets get some idea of how σ changes a N is increased. For a
fair coin p = q = 1/2.

N σ(=
√
Npq)

4 1
400 10
40000 100
4000000 1000

It looks like the number of heads changes more from one toss
to the next, as the number of coins is increased.

But if we plot the distribution on a graph:

we would find that it gets more sharply peaked!
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A reference quantity

The reason is because, on the graph, we are looking at the

standard deviation relative to the total number of coins N .

So, although 10 is large than 1, 10/400 would be smaller than

1/4.

In the case of the coins, we should therefore be comparing the

standard deviation with the total number of coins N .

x is the actual number of heads.

The average of deviation of this number from the mean, as a

fraction of N , is σ/N =
√
pq/N .

When N is very large, this fraction approaches zero.
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The dotted curve is the smallest N , the solid curve the largest
N . Notice that the peak gets narrower for large N .

If N is as big as the number of atoms in a real material, the
peak becomes extremely narrow.

Then x = N/2 becomes almost the only possible value.
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The Analogy with Temperature

We can apply this to atoms:

1. H is the higher energy state, T is the lower one.

2. One toss of a coin is one atom.

3. The larger the number of H, the higher the temperature.

In a real material at room temperature, atoms could hop

between energy levels randomly through colliding with other

atoms.

Because the number of atoms is huge, deviation of particle

numbers at each level from the values predicted from their

probabilities are extremely small.
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Warming up exercises
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Mole Concept

Exercise 1

How many atoms are there in each of the following?

(NA = 6.022× 1023)

1) 1 mole of iron

2) 0.2 mole of copper

3) 3 moles of silver

4) 1 mole of oxygen (O2), and how many molecules?

5) 1 mole of water (H2O), and how many oxygen atoms?

6) 1 mole of sodium chloride (NaCl), and how many sodium

ions?

7) 1 mole of helium-4 (4He)

8) 1 mole of helium-3 (3He)
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Mole Concept

Solutions to Exercise 1

1) 6.022× 1023

2) 0.2× 6.022× 1023

3) 3× 6.022× 1023

4) 2× 6.022× 1023 atoms, and 6.022× 1023 molecules

5) 3× 6.022× 1023 atoms, and 6.022× 1023 oxygen atoms

6) 2× 6.022× 1023 atoms, and 6.022× 1023 sodium ions

7) 6.022× 1023

8) 6.022× 1023
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Mole Concept

Exercise 2

What is the mass of each of the following? (Ar stands for

relative atomic mass.)

1) 1 mole of iron (Ar=56)

2) 0.2 mole of copper (Ar=64)

3) 3 moles of silver (Ar=108)

4) 1 mole of oxygen (O2) (Ar=16)

5) 1 mole of water (H2O) (Ar of H=1, of O=16)

6) 1 mole of sodium chloride (NaCl) (Ar of Na=23, of

Cl=35.5)

7) 1 mole of helium-4 (4He)

8) 1 mole of helium-3 (3He)
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Mole Concept

Solutions to Exercise 2

1) 56 g

2) 0.2 × 64 g

3) 3 × 108 g

4) 2 × 16 g

5) (2×1 + 16) g

6) (23 + 35.5) g

7) 4 g

8) 3 g
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Mole Concept

Exercise 3

How many atoms are there in each of the following? (Ar

stands for relative atomic mass.)

1) 1 g of iron (Ar=56)

2) 1 g of copper (Ar=64)

3) 1 g of silver (Ar=108)

4) 1 g of oxygen (O2) (Ar=16)

5) 1 g of water (H2O) (Ar of H=1, of O=16)

6) 1 g of sodium chloride (NaCl) (Ar of Na=23, of Cl=35.5)

7) 1 g of helium-4 (4He)

8) 1 g of helium-3 (3He)
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Mole Concept

Solutions to Exercise 3

1) 1/56× 6.022× 1023

2) 1/64× 6.022× 1023

3) 1/108× 6.022× 1023

4) 1/(2× 16)× 6.022× 1023

5) 1/(1 + 1 + 16)× 6.022× 1023

6) 1/(23 + 35.5)× 6.022× 1023

7) 1/4× 6.022× 1023

8) 1/3× 6.022× 1023
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Some exercises

Exercise 4

Suppose a biased coin is tossed 2 times. The probability

distribution for 0, 1 and 2 heads are given by 0.36, 0.48 and

0.16, respectively. Find the mean and standard deviation of the

number of heads.

Answer

Let x be the number of heads. The distribution given is

x P (x)
0 0.36
1 0.48
2 0.16
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Some exercises

The mean is µ =
∑
xP (x) = 0×0.36 + 1×0.48 + 2×0.16 = 0.8.

(Out of 2 tosses, we only get 0.8 heads on average. Obviously,

this coin is biased towards the tail.)

x x− µ (x− µ)2

0 -0.8 0.64
1 0.2 0.04
2 1.2 1.44

The standard deviation is

σ =
√∑

(x− µ)2P (x)

=
√

0.64× 0.36 + 0.04× 0.48 + 1.44× 0.16 = 0.48.
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Microstates and Macrostates
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Consider a particle with 2 energy levels: ε1 and ε2. Suppose we

have N = 2 particles. And there are n1 particles at energy level

ε1, and n2 at ε2.

The following lists all the possible arrangements:

Macrostates Microstates

(2, 0) [ε1, ε1]
(0, 2) [ε2, ε2]
(1, 1) [ε1, ε2], [ε2, ε1]

For example, [ε1, ε2] would mean that particle 1 is at level ε1

and particle 2 is at level ε2. This is one particular arrangement.

A particular arrangement of particles among energy levels is

called a microstate.
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(n1, n2) specifying the number of atoms at each level.

The set of numbers specifying the number of atoms at each

level is called the macrostate.

E.g. Consider a particle with 3 energy levels: ε1, ε2 and ε3.

Suppose there are N = 2 particles. And there are n1 = 2 at

energy level ε1, n2 = 0 at ε2, and n3 = 0 at ε3.

The macrostate in this case is (n1, n2, n3) = (2, 0, 0).

Lets write down a useful relation:

N = n1 + n2 + n3

The total number of particles is equal to the sum of the

particles at each level.
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Particles with more than two energy levels

In general, a system can have many energy levels. We want to

know the most likely macrostate (n1, n2, n3, ...) of a system,

because this would allows us to find the total energy, heat

capacity, etc.

The most likely macrostate is the one with the largest number

of microstates - or arrangements.

For two energy levels, the number of microstates for the

macrostate (n1, n2) is

Ω =
N !

n1!n2!

It the number of ways of putting N different objects into 2

boxes.
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Particles with more than two energy levels

For more energy levels, the formula generalises to:

Ω =
N !

n1!n2!n3!...ni!...
or

Ω =
N !∏
i ni!

The total number of particles is N . The macrostate is specified

by the number of particles at each energy level:

(n1, n2, ..., ni, ...). So the total number must the the sum of the

particles at each level:

N =
∑
i

ni

We consider an isolated system that is very well insulated from

the surrounding. Then the total energy U of the particles

would remain constant.
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Particles with more than two energy levels

There are n1 particles at energy level ε1, so the total energy of

these particles is n1ε1. Adding up the energy of the particles at

all energy levels, we have the energy of the whole system:

U =
∑
i

niεi

Ω is a function of the variables (n1, n2, ...).

There are 2 conditions, or constraints, on these variables:

(i) the total number of particles is a constant, and

(ii) the total energy is also a constant.

In order to maximise Ω, we can use the method of Lagrange

multipliers.
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To find the most probable macrostate

The procedure is as follows:

1. We maximise ln Ω instead of Ω. The result would be the

same because when ln Ω is a maximum, so is Ω.

2. The reason for using ln Ω is that it can be simplified for very

large N using the Stirling’s theorem.

3. Write down the Lagrange function ln Ω + λ1N + λ2U .

4. α and β are new parameters called Lagrange multipliers.

5. Differentiate this with respect to every ni.

6. Set the derivative to zero and solve for ni, λ1 and λ2.

7. This gives the macrostate (n1, n2, ...).
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Stirling’s Theorem

The Stirling’s Theorem is used for large factorials.

For real objects, N may be the number of atoms. This could

be as big as 1030, and it takes a long time to calculate.

Fortunately, there is a simple, approximate formula that is very

accurate for large numbers:

lnN ! ≈ N lnN −N

This formula is the Stirling’s Theorem.
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The algebra

We need to maximise

ln Ω + λ1N + λ2U

In order to do so, we need to differentiate this. Start with

N = n1 + n2 + ...+ ni + ...

Differentiating with respect to ni gives

∂N

∂ni
= 1.

Next, we differentiate

U = n1ε1 + n2ε2 + ...+ niεi + ...

This gives

∂U

∂ni
= εi.

Next we need to differentiate ln Ω.
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The algebra

Start with the formula

Ω =
N !

n1!n2!...ni!...

Then take the logarithm,

ln Ω = lnN !− lnn1!− lnn2!− ...− lnni!− ...

and apply Stirling’s theorem:

ln Ω = N lnN−N−(n1 lnn1−n1)−(n2 lnn2−n2)−...−(ni lnni−ni)−...

Differentiating, we get

∂ ln Ω

∂ni
= − lnni

Note that in this differentiation, N in Ω is to be treated as a

constant. This is unlike in λ1N where it is a function of ni.

The reason is because Ω is up to us to define, and it is

sufficient to vary ni.
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The algebra

These are what we have obtained:

∂N

∂ni
= 1

∂U

∂ni
= εi

∂ ln Ω

∂ni
= − lnni

To maximise the Lagrange function ln Ω + λ1N + λ2U , we need

to differentiate this and set the derivative to zero:

∂ ln Ω

∂ni
+ λ1

∂N

∂ni
+ λ2

∂U

∂ni
= 0

Substituting the above results, we get:

− lnni + λ1 + λ2εi = 0
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The most probable macrostate

We have obtained

− lnni + λ1 + λ2εi = 0

Soving for ni gives the solution:

ni = A exp(λ2εi)

where A = exp(λ1).

Next, we need to determine λ1, or A, and λ2.

A can be obtained using

N =
∑

ni,

the condition that the total number of particles is N . This is
called the normalisation condition. Substituting, we get

N = A
∑

exp(λ2εi).

Rearranging this gives

A =
N∑

exp(λ2εi)
.
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Boltzmann’s postulate

Next, we need to find λ2. In principle, we can use the next

constraint

U =
∑

niεi

Substituting the solution

ni = A exp(λ2εi)

we get

U =
∑

Aεi exp(λ2εi)

Then solve for λ2.

Unfortunately, this equation is very difficult to solve. Instead,

we need to take another approach. That is to make use of our

knowledge of thermodynamics.
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Boltzmann Postulate
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Boltzmann’s postulate

The purpose of doing all these calculations is to find a way to

calculate thermodynamic quantities like entropy and heat from

first principles.

Instead of solving for λ2 directly, we can try and find it in terms

of known quantities in thermodynamics. We shall start by

stating the result:

λ2 = −
1

kBT
.

where kB is the Boltzmann constant and T is the temperature.

There are different ways to determine this. We shall look at

the following approach.
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Boltzmann’s postulate

To relate λ2 to the entropy formula

dQ = dU = TdS,

we look at the Lagrange function ln Ω + λ1N + λ2U again.

Previously, we have taken the derivative to find the set of

numbers (n1, n2, ...) that would maximise the function. We

have found the solution for ni, except for the unknown λ2.

For small variations about this solution (n1, n2, ...), the change

in the Lagrange function would be zero, since it is at a

maximum. So

d(ln Ω) + λ1dN + λ2dU = 0

Suppose we impose the condition that the total N is fixed, but

we give some heat to the system so that U increases a little.
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Boltzmann’s postulate

Since N is constant, dN = 0. So

d(ln Ω) + λ1dN + λ2dU = 0

becomes

dU = −
1

λ2
d(ln Ω)

Compare with

dU = TdS.

Boltzmann postulated that

S = kB ln Ω

where kB is a constant. Substituting this into the above, we
find that

λ2 = −
1

kBT

This completes the solution for the macrostate (n1, n2, ...):

ni = A exp(λ2εi) = A exp

(
−

εi
kBT

)
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Boltzmann’s postulate

We shall see later, in the lectures on ideal gas, that k is the

Boltzmann constant

kB =
R

NA
= 1.3807× 10−23J K−1,

where R is the ideal gas constant and NA is Avogadro’s

constant.

The solution for the macrostate tells us how the number of

particles are distributed in different energy levels:

ni = A exp

(
−

εi
kBT

)
.

It is called the Boltzmann distribution.

Historically, the formula

S = kB ln Ω.
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Boltzmann’s postulate

was first postulated by Boltzmann. It is so important that it is

engraved on his tombstone ...
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Worked Examples
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Example 1

Minimise the function f(x, y) = x2 + y2, subject to the

constraint x+ y − 2 = 0.

(i) Do it mentally, or by inspection of the graphs.

(ii) Do it using Lagrange multiplier.

Do the results agree?
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Mentally ...

Answer

1. The contours of f(x, y) are just circles, e.g. x2 + y2 = 1,
x2 + y2 = 2, ... The circles get larger as the value increases.

2. The constraint x+ y − 2 = 0 is a straight line with
intercepts x = 2 or y = 2.
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Answer: Mentally ...

1. By symmetry, f(x, y) is highest at the midpoint between the

intercepts, where x = y = 1.

2. Therefore, f(x, y) = 12 + 12 = 2.
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Using Lagrange multiplier ...

1. Let g(x, y) = x+ y − 2. The constraint is then g(x, y) = 0.

2. The Lagrange function is

f(x, y) + λg(x, y) = x2 + y2 + λ(x+ y − 2) (1)

3. The gradient gives:

1. Differentiate wrt x: 2x+ λ = 0.

2. Differentiate wrt y: 2y + λ = 0.

4. Solving with the constraint equation gives λ = −2 and

x = y = 1, as before.
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Example 2

Use your calculator to work out ln 10!. Compare your answer

with the simple version of Stirling’s theorem (N lnN −N). How

big must N be for the simple version of Stirling’s theorem to be

correct to within (ii) 5% (ii) 1% ?

Answer

ln(10!) = 15.11 whereas 10ln(10)-10 = 13.03. There is less

than 5% difference for N = 24 and less than 1% for B = 91.

Stirling’s approximation is quite accurate even for relatively

small N.
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Boltzmann Distribution

Example 3

A system of particles is at a temperature of 2 K. Find the

Boltzmann factor for each of these energy levels:

(kB = 1.38× 10−23)

1) 1× 10−23 J

2) 2× 10−23 J

3) 3× 10−23 J

4) 4× 10−23 J

5) 5× 10−23 J

6) 6× 10−23 J

7) 7× 10−23 J

8) 8× 10−23 J
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Boltzmann Distribution

Solutions to Example 3

1) 0.6961

2) 0.4845

3) 0.3372

4) 0.2347

5) 0.1634

6) 0.1137

7) 0.07916

8) 0.05510
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Boltzmann Distribution

Example 4

There are 1023 particles. The system has two energy levels

only: 0 J and 10−23 J. Find the number of particles at 0 J

when the temperature is:

1) 1 K

2) 2 K

3) 3 K

4) 4 K

5) 5 K

6) 6 K

7) 7 K

8) 8 K
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Boltzmann Distribution

Solutions to Example 4

1) 6.736× 1022

2) 5.896× 1022

3) 5.601× 1022

4) 5.452× 1022

5) 5.362× 1022

6) 5.302× 1022

7) 5.259× 1022

8) 5.226× 1022
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Example 5

Consider a 10000 distinguishable particles at room temperature,

298 K. Suppose that each particle has 2 energy levels, 0.01 eV

and 0.02 eV. Find the number of the particles in each energy

level. ( Boltzmann’s constant is 1.3807× 10−23 J K−1.)
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Example 5

Answer

Since the number is quite large, we assume that the probability

at each energy level is given by Boltzmann’s distribution

A exp(−ε/kBT ).

At 0.01 eV, A exp(−ε/kBT ) = 0.6778A.

At 0.21 eV, A exp(−ε/kBT ) = 0.4594A.

The total is 0.6778A+ 0.4594A = 10000. So A = 8794.

Therefore the numbers are:

at 0.01eV, 0.6778× 8794 = 5961;

at 0.02eV, 0.4594× 8794 = 4040.
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Example 6

Calculate the quantity kBT at room temperature, 298 K. Give

the answer in eV. ( Boltzmann’s constant is 1.3807× 10−23 J

K−1. Electron charge is 1.6× 10−19 C.)

Answer

In Joules, kBT = 1.3807× 10−23 × 298 = 4.114× 10−21 J.

In eV, kBT/e = 4.114× 10−21/1.6× 10−19 = 0.026 eV.

Note: Since 1/40 = 0.025 is quite close to this answer, kBT at

room temperature is often quoted as 1/40 eV.
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Example 7

Consider a large number of distinguishable particles, at

temperature T .. Each particle has 4 energy levels 0, kBT , 2kBT

and 3kBT . Calculate the fraction of particles in each energy

level.

Answer

Since the number is quite large, we assume that the probability

at each energy level is given by Boltzmann’s distribution

A exp(−ε/kBT ).
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First, calculate the following:

at energy 0, exp(−ε/kBT ) = exp(0) = 1.
at energy kBT , exp(−ε/kBT ) = exp(−1) = 0.3679.
at energy 2kBT , exp(−ε/kBT ) = exp(−2) = 0.1353.
at energy 3kBT , exp(−ε/kBT ) = exp(−3) = 0.0498.

The sum is 1.553. The fractions are, therefore:

at energy 0, 1/1.553 = 0.6439.
at energy kBT , 0.3679/1.553 = 0.2369.
at energy 2kBT , 0.1353/1.553 = 0.0871.
at energy 3kBT , 0.0498/1.553 = 0.0321.

Notice that fraction drops to nearly 1/10 after just 2kBT .

In statistical mechanics, we often want to know if an energy
level is likely to be populated at some temperature. If the level
is much higher than kBT , then it is unlikely to be occupied.
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Worked example

Example 8

There is one mole of atoms at a temperature of 1 K. Each

atom has energy levels −10−23 J and 10−23 J. Find the number

of atoms at each level.

Solution

The formula is Boltzmann distribution

ni = A exp(−εi/kBT ).

Given

ε1 = −10−23 J, ε2 = 10−23 J, and T = 1 K.

We also know that n1 + n2 = NA (Avogadro constant).

We need to find the numbers n1 and n2. But what is A?
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Lets write out all equations:

n1 + n2 = NA

n1 = A exp(−ε1/kBT )

n2 = A exp(−ε2/kBT )

There are three unknowns: n1, n2 and A. Divide the last two

equations:
n1

n2
= exp((ε2 − ε1)/kBT ).

Let this above fraction be r. So the total is NA is divided into

the ratio r : 1. Therefore

n1 =
r

r + 1
×NA = 4.876× 1023

n2 =
1

r + 1
×NA = 1.145× 1023

57



Worked example

Example 9

Following from the previous example, find the total energy of
the atoms.

Solution

There are n1 atoms with energy ε1, so the energy of these
atoms is n1ε1

There are n2 atoms with energy ε2. so the energy of these
atoms is n2ε2.

Therefore the total energy is

U = n1ε1 + n2ε2.

Using the values from the previous example, we get

U = (4.876× 1023)(−10−23) + (1.145× 1023)(10−23) = 6.021J.
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Worked example

Example 10

Following from the previous example, find the probability that
an atom is at level 1, and the probability that it is at level 2.

Solution

The total number of atoms is NA.

There are n1 atoms at level 1 and n2 atoms at level 2.

An atom can change level with time. So any one time,
probability that it is at level 1 is

number of possible atoms at level 1

total number of atoms
=

n1

NA
=

4.876× 1023

6.022× 1023

Probability that it is at level 2 is

number of possible atoms at level 2

total number of atoms
=

n2

NA
=

1.145× 1023

6.022× 1023
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Worked example

Example 11

There are a number of atoms at a temperature of 1 K. Each

atom has energy levels −10−23 J and 10−23 J. Find the

probability that an atom is at each level.

Solution

This time, we are not given the total number of particles. We

still have the Boltzmann distribution:

n1 = A exp(−ε1/kBT )

n2 = A exp(−ε2/kBT )

but we cannot find A if we don’t know the the total number of

particles.
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Worked example

But we know that the probability that an atom is at level 1 is

number of possible atoms at level 1

total number of atoms
=

n1

n1 + n2

If we substitute the Boltzmann distribution, A cancels out!

n1

n1 + n2
=

�
�A exp(−ε1/kBT )

�
�A exp(−ε1/kBT ) + �

�A exp(−ε2/kBT )

We do know the energy levels and temperature, so we can not

calculate this. In the same way, the probability that an atom is

at level 2 is

n2

n1 + n2
=

�
�A exp(−ε2/kBT )

�
�A exp(−ε1/kBT ) + �

�A exp(−ε2/kBT )

The answers are 4.876/6.022 and 1.145/6.022 respectively.
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