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Density of States
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A particle in a 3-D box

In an ideal gas, we assume that there is little interaction

between atoms. We shall learn how to calculate the total

energy and other properties, and apply this to electrons,

phonons, photons, liquid helium, etc.

From the kinetic theory of gases, we know that the average

energy of each atom in an ideal gas is

1

2
mv2 =

3

2
kBT.

This means that the total energy is

U =
3

2
NkBT

and the heat capacity is

C =
dU

dT
=

3

2
NkB.
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A particle in a 3-D box

We first determine the energy states for a particle in a 3-D box.

We solve Schrödinger’s equation for the particle:

−
~2

2m

(
∂2ψ

∂x2
+
∂2ψ

∂y2
+
∂2ψ

∂z2

)
+ V ψ = Eψ

where V is zero in the box, and infinite at the walls. So the

wave function must have zero amplitude there.
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Energy states of the particle

This is done in the standard way by trying the solution

ψ = sin kxx sin kyy sin kzz

where (kx, ky, kz) are unknown constants. They can be

determined from the boundary condition that the wave function

must have zero amplitude at the wall.

In the x direction, suppose the walls are at x = 0 and x = a.

The condition can be written as:

sin kxa = 0.

This gives

kxa = nxπ or kx =
nxπ

a
,

where nx is a positive integer. This means that kx is quantised.

Similarly, for the y and the z directions, we find

ky =
nyπ

a
and kz =

nzπ

a
.
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Energy states of the particle

We can then substitute the solution

ψ = sin kxx sin kyy sin kzz

into the Schrödinger’s equation

−
~2

2m

(
∂2ψ

∂x2
+
∂2ψ

∂y2
+
∂2ψ

∂z2

)
+ V ψ = Eψ

to find the energy. This gives

~2

2m
(k2
x + k2

y + k2
z ) = E.

It can also be written in the form

~2k2

2m
= E

where

k2 = k2
x + k2

y + k2
z .

k is called the wavevector.
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Density of states.

To find the total energy of N particles, we need to add up all

their energies:

U =
∑

niεi.

where εi is the energy of level i and ni is the number of

particles at that level.

At room temperature, many of these levels could be occupied.

This is because for an ideal gas, spacing between energy levels

is much smaller than the average energy of a particle.

As a result, a plot of ni against εi may look like this.
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Density of states.

This suggests that we may approximate the graph to a curve,

and the sum to an integral.

Within a small interval dε, the energy ε is nearly constant. If we

know the number of particles in this interval, we can multiply

by ε to find the total.

Because of the quantisation condition, there can only be a

certain number of states in dε. For each state, there is a

certain probability that it would be occupied. Lets start by find

the number of states.
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Counting states

The wavevectors

kx =
nxπ

a

are quantised at uniform intervals in all three directions.

we can imagine a k space in which the the x coordinate is kx,

and so on. If we use a point to represent each state, we would

get a lattice like this.
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Counting states

First, we find the number of all states below energy ε. This

energy is related to the wavevector k by

ε =
~2k2

2m
.

k is in turn related to the components by

k2 = k2
x + k2

y + k2
z .

This describes a sphere in k space.
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DOS

Because kx, ky and kz are all positive, only the points within

1/8 of the sphere of radius k, where k is the wavevector for ε.

Since the spacing between points is π/a, the volume associated

with each point is (π/a)3. Therefore, the total number of

states is one eighth of the sphere volume divided by (π/a)3:

G(k) =
1

8
×

4

3
πk3 ÷

(
π

a

)3
.
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DOS

We find that the total number of states below k is

G(k) =
V k3

6π2
,

where V is the volume a3 of the box.

Suppose k is increased by dk. Then the number of states

increases by dG. So the density of states is

g(k) =
dG(k)

dk
=
V k2

2π2
.
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DOS

We have derived g(k) by first deriving G(k). We can also derive

g(k) directly.

Consider a spherical shell in k space with a thickness dk. The

states in the shell lie between wavevectors k and k + dk.

Each state is associated with volume (π/a)3. So the number of

states in the shell is volume of the shell divided by (π/a)3.
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DOS

Volume of the spherical shell is 4πk2dk. We only take 1/8 of

this because only positive components of kx, ky, kz are needed.

number of states in dk =
1

8
× 4πk2dk ÷

(
π

a

)3

g(k) =
number of states in dk

dk

g(k) =
1

8
× 4πk2 ÷

(
π

a

)3

g(k) =
V k2

2π2
.

where volume V = a3.
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DOS

We have earlier defined the DOS in terms of energy, ε.

To convert the variable from k to ε, we must use the method

for probability density function:

gε(ε)dε = gk(k)dk.

The subscripts are added here to emphasise that g(ε) and g(k)

are different functions.
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Changing variables

Rearranging,

gε(ε) = gk(k)
dk

dε
.

We can now substitute the relation

ε =
~2k2

2m

to find gε(ε). The answer is

g(ε) =
4mπV

h3
(2mε)1/2

where we have dropped the subscript again, as is the normal

practice. For comparison:

g(k) =
V k2

2π2
.

If you substitute ε for k in g(k), you DO NOT get g(ε). g(k)

and g(ε) are DIFFERENT functions!
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Changing variables

It is also useful to have the formula for total number states

G(k) =
1

8
×

4

3
πk3 ÷

(
π

a

)3
.

in terms of energy.

Since no ε or k intervals are involved, we can simply substitute

ε =
~2k2

2m
.

The answer is

G(ε) =
4πV

3h3
(2mε)3/2.
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Most Likely Macrostate
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Ideal gas energy states

We first show that it is very unlikely for two atoms to occupy

the same energy state.

At a temperature T , we know from simple kinetic theory of

ideal gas that the average energy of a gas atom is about

3kBT/2.

First, we need to know how many energy states there are

below this energy at room temperature. We can use the

formula we have derived:

G(ε) =
4πV

3h3
(2mε)3/2

by setting ε = 3kBT/2.
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Ideal gas energy states

G(3kBT/2) =
4πV

3h3
(2mε)3/2

Putting in the numbers for one mole of ideal gas at room

temperature, we find that the number of states below 3kBT/2

is about 1030.

1 mole of gas contains about 1024 atoms.

This means we have about 1030 ÷ 1024 = 106 states per atom.
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Ideal gas energy states

This means we have about 1 million energy states for every

atom.

So it is extremely unlikely that two atoms would ever occupy

the same energy state.

We are now going to derive the energy distribution of these

atoms.
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Grouping energy levels into bundles

We shall borrow the idea from histograms - divide the energy

levels into bins, or bundles.

Suppose each bundle covers an energy interval dε.

We want to find out how many ways we can arrange a number

of atoms in a particular bundle.
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Energy levels as partitions

Consider the ith bundle. There are gi energy states and ni
atoms.

Recall that it is extremely unlikely for two atoms to be in the

same state.

Think of each state as a partition. The partition and the atom

are like two different objects. We need to find the number of

ways to arrange ni atoms and gi partitions in a row.
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Number of arrangements

There are ni atoms and gi partitions.

We can use the combination formula nCr = n!
r!(n−r)!.

This gives, for one bundle, (ni+gi)!
ni!gi!

ways.

To find the total number of arrangements for all bundles, we

must multiply together the answer for every bundle:

Ω =
∏
i

(ni + gi)!

ni!gi!
(1)

Since the number of energy states in each bundle is much

larger than the number of atoms, gi >> ni, we can simplify this.
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Expand

Ω =
∏
i

(gi + ni)...(gi + 1)(gi)...(1)

ni!gi!
=
∏
i

(gi + ni)...(gi + 1)

ni!

Since gi >> ni, (gi + ni) ≈ gi and (gi + 1) ≈ gi. Therefore

Ω =
∏
i

g
ni
i

ni!

This gives the number of microstates in the macrostate ni.
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Ω =
∏
i

g
ni
i

ni!

If a macrostate is specified by (n1, n2, n3, ...), or ni in short,

then the above expression gives the number of microstates in

the macrostate.

We are interested in the most likely distribution of

(n1, n2, n3, ...), or the most probable macrostate.

We can once again apply the Lagrange multiplier to find this.
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Most probable macrostate for the ideal gas

We apply the Lagrange multiplier method as follows:

1. Instead of Ω, maximise ln Ω.

2. Apply Stirling’s approximation:

ln Ω =
∑
i

[ni ln gi − ni lnni + ni] =
∑
i

ni ln(gi/ni)] +N

3. The number of particles is fixed:

N =
∑
i

ni

4. The total energy is fixed:

U =
∑
i

niεi.

5. Define the Lagrange function as ln Ω + λ1N + λ2U .

6. To find the maximum, differentiate with respect to ni:

ln gi − lnni + λ1 + λ2εi = 0
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Most probable macrostate for the ideal gas

We have found

ln gi − lnni + λ1 + λ2εi = 0

Rearranging, we get

ni = Agi exp(λ2εi),

where

A = exp(λ1).

In the same way as before, by using our knowledge of entropy,

we can show that

λ2 = −
1

kBT
.

This gives the Boltzmann distribution again:

ni = Agi exp(−εi/kBT ),
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Approximate to continuous energy

We are mainly interested in the energy range of the order of

kBT (which means up to a few times of that). Most of the

atoms would fall in this range.

We have seen previously that there is a very large number of

energy states in this range.

Since the energy levels are so closely spaced, we can

approximate them to continuous energy.

We have previously obtained the density of states, which is the

number of states per unit energy, g(ε).

Consider the ith bundle. Assume that this occupies an energy

interval of dε.

The number of energy states is then given by gi = g(ε)dε.
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Approximate to continuous energy

In a similar way, we can define a number density n(ε) as the

number of particles per unit energy.

So the number of atoms in the bundle would be

ni = n(ε)dε.

Therefore, the distribution that we have obtained,

ni = Agi exp(−βεi),

can be rewritten as

n(ε)dε = Ag(ε) exp(−εi/kBT )dε
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Approximate to continuous energy

Substituting the formula for g(ε), we get

n(ε) = A
4mπV

h3
(2mε)1/2 exp(−εi/kBT )

Note that the total number of atoms is then given by

integrating over all energy:

N =
∫ ∞

0
n(ε)dε

This relation is known as the normalisation condition.
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Maxwell-Boltzmann distribution

The unknown constant A can be determined by integrating the

normalisation condition (with the help of the table of integrals):

A =
N

V

(
h2

2πmkBT

)3/2

This gives

n(ε) =
2πN

(πkBT )3/2
(ε)1/2 exp(−εi/kBT )

The energy is just the kinetic energy, ε = mv2/2. So

n(v) = N

(
2

π

)1/2
(
m

kBT

)3/2

exp(−mv2/2kBT )v2

This is the Maxwell-Boltzmann distribution of speeds.
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When would it break down?

We have assumed that: ”It is extremely unlikely that two
atoms would ever occupy the same energy state.”

Recall that we have arrived at this by looking at the number of
states below the mean energy 3kBT/2, when T is at room
temperature.

If T is very small, there may be far fewer states below the mean
energy. Then it would be very likely for two atoms to occupy
the same state, and the Maxwell-Boltzmann distribution would
not be valid.

Instead, quantum statistics - such as Fermi-Dirac or
Bose-Einstein - have to be used. We shall learn about these
later.

32



Boltzmann constant
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Boltzmann constant

We can now return to the earlier lectures on derivation of the

Boltzmann distribution

ni = A exp(−εi/kBT )

and tie up a loose end.

We can now find the total energy in an ideal gas. Replace the

sum

U =
∑

niεi

by the integral

U =
∫ ∞

0
n(ε)εdε.

Substitute the formula for number density:

U =
∫ ∞

0

2πN

(πkBT )3/2
(ε)1/2 exp(−ε/kBT )εdε.
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Boltzmann constant

Integrating this gives the formula for the total energy that we

know from kinetic theory of gases:

U =
3

2
NkBT

This is evidence that the Boltzmann distribution for the ideal

gas is correct.

Differentiating with respect to T gives the heat capacity:

C =
3

2
NkB.

The measured value is:

C =
3

2
nR.

R is the gas conant and has the value of 8.314 J mol−1 K−1.
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Recall that kB is related to one of the Lagrange multipliers.

We can find it by comparing the measured C above, with the

formula derived using the Boltzmann distribution.

Comparing

C =
3

2
NkB

and

C =
3

2
nR,

we find

NkB = nR.

Since the number of moles n is related to the number of

particles N by

n =
N

NA
,
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we have

NkB =
N

NA
R

and finally, we obtain the value for kB:

kB =
R

NA
,

which is indeed the Boltzmann constant as we have assumed.
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Worked Examples
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Example 1

Show that the partition function of an ideal gas:

Z =
∫ ∞

0

4mπV

h3
(2mε)1/2 exp(−ε/kBT )dε

is given by:

Z = V

(
2πmkBT

h2

)3/2
.

[You are given that∫ ∞
−∞

x2ne−a
2x2

dx =
(2n)!π1/2

n!(2a)2na

]
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First, move the constant factors outside the integral:

Z =
4mπV

h3
(2m)1/2

∫ ∞
0

ε1/2 exp(−ε/kBT )dε

There is no power of 1/2 in the integration formula that is

given. So we start with the substitution

ε = x2

Then

Z =
4mπV

h3
(2m)1/2

∫ ∞
0

x exp(−x2/kBT ).2xdx

=
4mπV

h3
(2m)1/22

∫ ∞
0

x2 exp(−x2/kBT )dx

Next, set n to 1 in the given formula:∫ ∞
−∞

x2e−a
2x2

dx =
2π1/2

(2a)2a

The lower of limit of this integral is −∞. To make this agree

with the integral for the partition function Z ...
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We change the lower limit to 0 and halve the right hand side,

and the formula becomes:∫ ∞
0

x2e−a
2x2

dx =
π1/2

(2a)2a

Now comparing with the partition function again:

Z =
4mπV

h3
(2m)1/22

∫ ∞
0

x2 exp(−x2/kBT )dx

the integrals become the same if we set

a2 =
1

kBT
.

Substituting this into the formula gives∫ ∞
0

x2e−x
2/kBTdx =

π1/2

4
(kBT )3/2

Substituting this into partition function intergral, ...
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We get

Z =
4mπV

h3
(2m)1/22

π1/2

4
(kBT )3/2

Simplifying,

Z = V

(
2mπkBT

h2

)3/2

we get the formula for the partition function.

42



Example 2

What is the root-mean-square speed of a helium atom at room

temperature?

[Given that the relative atomic mass of helium is 4.

Atomic mass unit u is 1.6605× 10−27 kg.

Boltzmann’s constant kB is 1.3807× 10−23 J K−1. ]
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First, we find the mean of v2. This is can be obtained by

v̄2 =
1

N

∫ ∞
0

v2n(ε)dε.

We have multiplied v2 by the number particles at each energy
interval dε, and divided by the total number N .

The energy of the atom in an ideal gas is just the kinetic
energy,

ε =
1

2
mv2.

If we rewrite the above integral for v2 in terms of the energy,
we get

v̄2 =
2

Nm

∫ ∞
0

εn(ε)dε.

This integral is just the total energy U , i.e.

v̄2 =
2

Nm
U.
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We have previously obtained the energy U from the partition

function:

U =
3

2
NkBT.

So the mean square speed is

v̄2 =
2

Nm

3

2
NkBT =

3kBT

m

The root-mean-square speed is then√
v̄2 =

√
3kBT

m
.
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We can now calculate the root-mean-square speed. The mass

of the helium atom is

4u = 4× 1.6605× 10−27 = 6.642× 10−27 kg.

Taking the room temperature as 298 K, the answer is√
v̄2 =

√
3kBT

m

=

√√√√3× 1.3807× 10−23 × 298

6.642× 10−27

= 1363 m/s
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