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Fermi-Dirac statistics
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Electrons in a metal

The Drude model was propose in 1900 by Paul Drude to
explain the transport properties of electrons in a metal.

This treats the electrons like an ideal gas.

It explains very well the DC and AC conductivity in metals, the
Hall effect, and thermal conductivity.

However, it greatly overestimates the heat capacities.

http://en.wikipedia.org/wiki/Drude_model
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Why did the electron gas model fail?

When we derived the Maxwell-Boltzmann distribution for the

ideal gas, we assumed that it is extremely unlikely for two

atoms to occupy the same energy level.

The reason is that the energy levels are very close together,

compared to the average energy of the atoms.

Unfortunately, this is no longer true for electrons in a metal at

room temperature.
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Recall the equation for the energy of a state:

εnxnynz =
h2

8ma2
(n2
x + n2

y + n2
z)

Because the electron has a much smaller mass, the energy

levels are much higher and further apart.

So the electrons have to occupy all of the lowest levels first.
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The exclusion principle

Electrons are not allowed to occupy the same energy states.

So they have to be stacked up from bottom to top.

When heated, most of the electrons are stuck - there is no

space above to move up in energy !

Only those few at the very top can. As a result, the heat

capacities are much smaller than expected of a gas.
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Fermi-Dirac statistics

As a result, we cannot use the Maxwell-Boltzmann distribution

for the ideal gas.

Fortunately, we can use the same statistical methods that we

have learnt so far.

Lets start by looking at the picture of the bundle from another

angle.

We have gi energy states in the bundle. Suppose the bundle

contains ni electrons.
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Fermi-Dirac distribution

According to the exclusion principle, exactly ni states must be

filled and exactly gi − ni states unfilled.

The total number of ways the electrons can be arranged in this

bundle is therefore:

Ωi =
gi!

ni!(gi − ni)!

For the whole system - i.e. all the bundles - we get

Ω =
∏
i

gi!

ni!(gi − ni)!

Applying the Lagrange multiplier method again, we would get

ni
gi

=
1

exp(−λ1 − λ2εi) + 1

where λ1 and λ2 are the Lagrange multipliers.

We have applied the same constraints as before on the particle

number N and the energy U .
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Fermi-Dirac distribution

Previously, we have used n(ε) for the number density, g(ε) for

density of states, and dε for the energy interval of the bundle.

We also know that one of the Langrange multipliers would be

related to temperature:

λ2 = −1/kBT

The distribution of the electrons may then be written as

n(ε)dε =
g(ε)dε

exp(−λ1 + ε/kBT ) + 1
.

This is called the Fermi-Dirac distribution function.
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Fermi-Dirac distribution

We have obtained the Fermi-Dirac distribution function.

n(ε)dε =
g(ε)dε

exp(−λ1 + ε/kBT ) + 1
.

The total number of electrons is fixed and is given by

integrating the normalisation condition:

N =
∫ ∞

0

g(ε)dε

exp(−λ1 + ε/kBT ) + 1

In principle, we could solve for the Lagrange multiplier λ1. It is

common practice to express it in terms of µ as follows:

exp(−λ1) = exp(−µ/kBT )

µ is called the ”chemical potential.”
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Occupying the energy states

For convenience, we define the following function:

f(ε) =
n(ε)

g(ε)
=

1

exp((−µ+ ε)/kBT ) + 1

Since g(ε)dε is the number of states and n(ε)dε is the number
of particles, f(ε) would be the fraction of states that are
occupied.

So f(ε) is called the occupation number. We need to get a feel
as to what this looks like and how it changes with temperature.

Lets start with the simplest case: T = 0K. If we allow T to
approach zero, we will find:

f(ε) = 1 for ε < µ

f(ε) = 0 for ε > µ

This means that all states with energy below µ are fully
occupied. All states with energy above µ are empty.
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Occupying the energy states

The graph for f(ε) looks like this

The shape shows that the energy levels are occupied below a

certain energy, and unoccupied above that.

This feature is characteristic of the Fermi-Dirac distribution

that we are studying.
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The Fermi energy

At T = 0K, The highest energy in the stack of electrons is µ.

This energy is also called the Fermi energy, EF .

We can find the Fermi energy EF by integrating the

normalisation condition:

N = 2×
∫ ∞

0
n(ε)dε

The factor of 2 must be added because each energy level can

be occupied by 2 electrons - spin up and spin down.

We shall solve this for the Fermi energy EF .
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The Fermi energy

In terms of the occupation number,

n(ε) = g(ε)f(ε)

So the normalisation condition can be written as:

N = 2×
∫ ∞

0
n(ε)dε = 2×

∫ ∞
0

g(ε)f(ε)dε

We know that at 0K, f(ε) = 0 for ε > µ. So So the integration

would stop at ε = µ:

N = 2×
∫ EF

0
g(ε)f(ε)dε

since µ = EF at 0K.

We also know that at 0K, f(ε) = 1 for ε < µ. So

N = 2×
∫ EF

0
g(ε)dε
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The Fermi energy

We have previously derived the density of states:

g(ε) =
4mπV

h3
(2mε)1/2

In the topic on ideal gas, this is obtained by counting the
number of energy states of a particle in a 3-D box. In this
topic on electrons, we have used the same particle in a box.
The difference from ideal gas only arises later on, when we
make different assumptions about the energy levels.

So the same formula for the density of states can be used for
both the ideal gas and the electrons. We can therefore
substitute the formula into the normalisation integral

N = 2×
∫ EF

0
g(ε)dε

and solve for the Fermi energy. The result is

EF =
~2

2m

(
3π2N

V

)2/3

.
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Electronic heat capacity
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Heat capacity

We want to use the ideas and formulae that we have developed

to calculate the heat capacity of electrons.

To see how to do this, recall that the Drude model would

predict a heat capacity for that is the same as that of an ideal

gas:

C =
3

2
NkB.

It is known from experiments that the actual heat capacity of

the electrons is much smaller. This refers to measurements

that are done at room temperature.
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Heat capacity

We can understand this if we think that the electrons that are

stacked up to the Fermi energy do not have enough energy to

jump out of the stack.

This would only be true if the thermal energy is much smaller

than the Fermi energy.

In order to find out if this is true, we need to estimate this

thermal energy.
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Heat capacity

We start by assuming that the thermal energy is indeed much
smaller than the Fermi energy. We shall derive an expression
for this thermal energy, and then calculate it at room
temperature to see if the assumption can be justified.

At a temperature above 0 K, the occupation number

f(ε) =
1

exp((−µ+ ε)/kBT ) + 1

would no longer have a sharp step at the Fermi energy.

If kBT is much smaller than µ, the graph would remain close to
the step, as if the step has become smoother.
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Heat capacity

The ”smoothened” slope of the graph tells us that electrons

just below the Fermi energy (µ = EF ) is excited just above it.

So we can estimate gain in thermal energy of the excited

electrons by the width δ of this slope.

In order to do this, we take a closer look at the occupation

number

f(ε) =
1

exp[(ε− µ)/kBT ] + 1
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Heat capacity

We are assuming that kBT is much smaller than µ.

For energy ε higher than µ by a few times of kBT , The

exponential function exp[(ε− µ)/kBT ] would quickly become

large.

The occupation number is then approximately

f(ε) =
1

exp[(ε− µ)/kBT ] + 1
→

1

exp[(ε− µ)/kBT ]

which is just the exponential function with negative argument

f(ε) = exp[−(ε− µ)/kBT ].
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Heat capacity

This means that the part of the graph to the right of µ falls off

exponentially.

It falls by a fraction of 1/e over an energy range of kBT .
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Heat capacity

There is a corresponding behaviour just below the Fermi energy.

For energy ε lower than µ by a few times of kBT , The

exponential function exp[(ε− µ)/kBT ] would quickly become

small.

The occupation number is then approximately

f(ε) =
1

exp[(ε− µ)/kBT ] + 1
→ 1− exp[(ε− µ)/kBT ]

where we have used the binomial expansion and kept only the

first order term.
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Heat capacity

This means that the part of the graph to the left of µ tends to
the line f(ε) = 1 exponentially.

It reaches within f(ε) = 1 by a fraction of 1/e, over an energy
range of kBT .

This means that it is the electrons within this energy range
that is excited. So the thermal energy of the excited electrons
is of the order of kBT .
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Heat capacity

At this point, we should justify our assumption that kBT at

room temerature is much smaller than the Fermi energy

µ = EF , which is defined at 0 K.

We shall take sodium metal as an example, and calculate kBT

and EF for this metal.

In sodium, each atom has one valence electron. This electron

is mobile and forms the electron gas that we are talking about.

In order to calculate the Fermi energy, we need the number

density N/V . We can calculate this from the following data:

density = 0.97 g cm−3

relative atomic mass = 23.0

So the volume for one mole of atoms is

23÷ 0.97 = 23.71 cm3,
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Heat capacity

and the number density is

N

V
= NA ÷ 23.71

where NA is Avogadro’s number. This gives an answer of

2.54× 1028 m−3.

Using the Fermi energy formula,

EF =
~2

2m

(
3π2N

V

)2/3

.

where m is the mass of the electron, we can find that the

Fermi energy is 3.16 eV.
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Heat capacity

In contrast, at room temperature 298 K, we can calculate that

kBT ≈
1

40
eV.

This is about 120 times smaller than the Fermi energy.

We can repeat this for other typical metals, and we would get

similar answers.

This justifies our assumption that at room temperature kBT is

much smaller than the Fermi energy.

We are now a step closer to estimating the electronic heat

capacity. Next, we need to understand the behaviour of the

excited electrons.
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Heat capacity

When temperature increases above 0 K, the step in the

Fermi-Dirac distribution becomes smoother as electrons just

below the Fermi energy are excited above it.

Notice that the ”tail end” of the distribution - to the right -

looks exponential. This is because there are relatively few

electrons above the Fermi energy. So these can behave like the

ideal gas and approximately obey the Maxwell-Boltzmann

distribution.
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Heat capacity

It is clear from the graph that for a small increase in
temperature, only electrons close to the Fermi energy are
excited. Most of the electrons are below the Fermi energy and
are not excited at all. Since they cannot be excited, these
electrons would not contribute to the heat capacity .

So it is mainly the electrons close to the Fermi energy that
would contribute to the heat capacity. So we can use these to
estimate the heat capacity and ignore the rest.
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Heat capacity

As we have seen, these electrons close to the Fermi energy

behave like the ideal gas. We know that the energy of an ideal

gas is

U1 =
3

2
N1kBT

where N1 is the number of particles in the ideal gas.

In the case of the electrons, N1 should refer to the number of

electrons above the Fermi energy, and not the total number of

electrons. We can estimate this number as follows.
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Heat capacity

The electrons that do get excited are in the small energy range

of order kBT from the Fermi energy EF .

So we can estimate N1 with the number of electrons that are

within the energy interval of

dε = kBT

from the Fermi energy.
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Heat capacity

We know that the number of particles in a given energy
interval is

n(ε)dε = 2g(ε)f(ε)dε

where the factor of 2 again comes from the spin states of the
electrons.

At 0K, the energy states below EF are fully occupied, i.e.
f(ε) = 1. So the number would given by

N1 ≈ 2g(EF )kBT
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Heat capacity

From the definitions of the density of state and the Fermi
energy, it can be shown (see exercises) that

g(EF ) =
3N

4EF
where N is the total number of electrons. This gives

N1 ≈ 2

(
3N

4EF

)
kBT =

3

2
N
kBT

EF
Substituting into the energy for ideal gas

U1 =
3

2
N1kBT

we get the energy for the excited electrons

U1 =
3

2

(
3

2
N
kBT

EF

)
kBT =

9

4
NkB

kBT
2

EF
Differentiating with respect to T , we get the electronic heat
capacity

C =
9

2
NkB

kBT

EF
32



Heat capacity

We summarise what we have learnt about the heat capacity:

Some states below Fermi level becomes empty, and some

states above becomes occupied.

For a temperature T , an electron that gets excited would be

able to gain on average an energy of about 3kBT/2.
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Heat capacity

1. Only electrons within kBT of the Fermi level can jump up.

Those further down cannot jump because the states above are

still mostly occupied.

2. The number of electrons that can get excited is 3kBT
2EF

N .

This is a fraction 3kBT
2EF

of the total.

3. Each would gain an energy of about 3kBT/2. So the

increase in total energy is obtained by multiplying the number

of excited electrons by this energy

∆U ≈
3kBT

2EF
N × 3kBT/2 =

9

4
NkB

kBT
2

EF
.

4. Differentiating with respect to T , we get the electronic heat

capacity

C =
9

2
NkB

kBT

EF
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Heat capacity of a metal

We have obtained the electronic heat capacity

C =
9

2
NkB

kBT

EF

More detailed calculations show that the factor of 9/2 should

really be π2/2:

C =
π2

2
NkB

kBT

EF

This equation is often written in the form

C =
π2

2
NkB

T

TF

where TF = EF/kB is called the Fermi temperature.
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Heat capacity of a metal

Notice that the heat capacity is directly proportional to T .

C =
π2

2
NkB

T

TF
This is often written in the form

C = γT.

There is another contribution to the heat capacity. This comes
from the vibrations of the atoms, and it is proportional to T3.

We could imagine writing the total heat capacity in the form:

cV = γT +AT3.

We can measure this heat capacity to check if the formula is
correct. Suppose that we have obtained a table of values for T
and cV . To check if the formula is correct, we can rewrite it in
this form:

cV /T = γ +AT2

If we plot cV /T against T2, we should get a straight line.
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Heat capacity of a metal

In 1955, William Corak and his fellow co-workers measured the
heat capacities of copper, gold and silver from 1K to 5K in
their laboratory in Pittsburgh.

They plotted cV /T against T2, and got the straight lines. The
picture here is a sketch of their results. This shows that the
predictions of the Fermi-Dirac statistics are correct.

37



Effective mass, and a few other things
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Heat capacity of a metal

From the formula,

cV /T = γ +AT2

we know that we can find γ from the y-intercept of the graph.

The following table shows the values for a few metals.

The second column contains the values of γ from the formula:

C =
π2

2
NkB

kBT

EF
= γT

The third column contains the values actually measured. They

are obviously different.
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Heat capacity of a metal

Does this mean that our theory is wrong?

Yes and no. The theory tells us that the electronic heat

capacity is proportional to T . The measurement shows that

there is indeed such a contribution.

So we are not completely wrong. Perhaps the theory needs

refining. We can be optimistic and go back and try and

understand what we have missed.

Recall that we have started with a particle in a 3-D box and

calculated the energy levels. Then we just fill these up with

electrons and calculated the heat capacity. All we have is a gas

of electrons in empty space.
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Heat capacity of a metal

But what about the atoms? The ”empty space” is really filled

with atoms. The electrons must surely interact with the atoms.

This then is the reason for the difference between theory and

measured γ.

However, the measured C is proportional to T . This agrees

with theory, and it should mean something. One possibility is

that, for some reason, the electron interacts only weakly with

the atoms. This idea has been shown to be correct by other

types of measurements.

According to this idea, the behaviour of the electrons in the

presence of the atoms is essentially the same. The difference is

that the interaction with the atoms make the electrons behave

as if they have a different mass.
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Heat capacity of a metal

If we imagine that the electrons in a metal has a different

effective mass m∗ than its natural mass, we can ”explain” the

difference in γ.

According to the formula for heat capacity, calculated γ is

given by

γ =
π2

2
NkB

kB
EF

This is inversely proportional to the Fermi energy

EF =
~2

2m

(
3π2N

V

)2/3

.

which is in turn inversely proportional to the mass m of the

electron.

So γ is directly proportional to the mass.
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Heat capacity of a metal

This means that we can get the effective mass if we divide the

measured γ (in the third column) by the calculated γ (in the

second column).

This is shown in the last column of the table.
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Behaviour at high temperatures

At very high temperatures, all the electrons could get excited.
Then they would start to behave like an ideal gas. There are
many more energy state they can reach and they are much less
likely to be forced towards the same energy states.

This would happen only if the electrons are excited far above
the Fermi energy. Therefore we can use Fermi temperature as
a reference. A temperature would be high if it is high compared
to the Fermi temperature.

At the high temperature, the heat capacity would therefore
change to that of the ideal gas. So instead of

C =
π2

2
NkB

T

TF
which is very small, it would become

C =
3

2
NkB

which is much larger.
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A note on the chemical potential

We have seen many times that the chemical potential µ is

equated to the Fermi energy EF . It is important to note that

this is true only at 0 K.

Recall the chemical potential µ is determined by the number of

particles:

N =
∫ ∞

0

g(ε)dε

exp[(ε− µ)/kBT ] + 1

At T = 0 K, the integral is just

N =
∫ µ

0
g(ε)dε

which is why µ is the Fermi energy then.

At higher temperature, µ would change. But for temperatures

well below the Fermi temperature, as with electrons in metals

at room temperature, we may assume that µ is still quite close

to the Fermi energy.

45



A note on fermions

Note that electrons belong to a larger family of particles called

fermions.

A fermion is a particle with a half integer spin. Other examples

are

the proton,

the neutron,

the helium-3 (3He) atom and

the oxygen-13 (13O) atom.

All fermions are known to show the kind of properties we have

seen for electrons. They obey the Fermi-Dirac statistics.
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What we have learnt so far

1. Electrons follow the Fermi-Dirac distribution:

n(ε)dε =
g(ε)dε

exp[(ε− µ)/kBT ] + 1
.

2. At 0 K, the electrons fill up the energy states from the
lowest level. The highest energy of the electrons is called the
Fermi energy:

EF =
~2

2m

(
3π2N

V

)2/3

.

3. When thermal energy kBT is small compared to the Fermi
energy, only electrons near the Fermi energy would get excited.
So only these would contribute to the electronic heat capacity:

C =
π2

2
NkB

T

TF
4. The Fermi temperature is defined as

TF =
EF
kB
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Worked Examples
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Example

Example 1

Show that the density of states at the Fermi energy EF is given

by

g(EF ) =
3N

4EF
where N is the number of electrons.

49



Example

We can make use of the following relations for the density of

states.

Relation with the total number of states:

g(ε) =
G(ε)

dε
.

Formula for the total number of states:

G(ε) =
4πV

3h3
(2mε)3/2

so

G(ε) ∝ ε3/2.

Relation with the Fermi energy and N :

N = 2
∫ EF

0
g(ε)dε.
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Example

From

g(ε) =
G(ε)

dε

and

N = 2
∫ EF

0
g(ε)dε,

we have

N = 2G(EF ).

From

G(ε) ∝ ε3/2,

we have

g(ε)

G(ε)
=

3

2ε
.

At the Fermi energy EF , we get ...
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Example

g(EF ) =
3G(EF )

2EF
.

Substituting the above result for N :

N = 2G(EF ),

we get

g(EF ) =
3N

4EF
.
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Example

Example 2

The number of ways of arranging fermions is given by

Ω =
∏
i

gi!

ni!(gi − ni)!
.

Use this formula, along with the conservation of particle

number and total energy, to derive the Fermi-Dirac distribution

function:
ni
gi

=
1

exp(−λ1 − λ2εi) + 1

where λ1 and λ2 are the Lagrange multipliers.
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Example

We need to maximise the Lagrange function ln Ω + λ1N + λ2U .

Using Stirling’s formula

lnN ! ≈ N lnN −N
we have

ln Ω ≈
∑
i

gi ln gi−gi−(ni lnni−ni)− [(gi−ni) ln(gi−ni)−(gi−ni)]

Differentiating with respect to ni,

∂ ln Ω

∂ni
= − lnni + ln(gi − ni) = ln

gi − ni
ni

The total number is given by

N =
∑
i

ni,

and the total energy by

U =
∑
i

niεi.

Differentiating these ...
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Example

We get

∂ lnN

∂ni
= 1

and
∂ lnU

∂ni
= εi.

Then differentiating the Lagrange function, we get

ln

(
gi − ni
ni

)
+ λ1 + λ2εi = 0

Rearranging, we get the Fermi-Dirac distribution function:

ni
gi

=
1

exp(−λ1 − λ2εi) + 1
.
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Example

Example 3

Show that the mean energy of electrons at absolute zero, ε̄ is

3EF/5, where EF is the Fermi energy.
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Exercises

The total energy is

U =
∫ ∞

0
n(ε)εdε.

For the Fermi-Dirac distribution,

U = 2
∫ ∞

0
g(ε)f(ε)εdε.

At 0 K, this would be

U = 2
∫ EF

0
g(ε)εdε.

Recall the density of states

g(ε) =
4mπV

h3
(2mε)1/2.

Substituting into the integral,

U = 2
∫ EF

0

4mπV

h3
(2mε)3/2dε.
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Example

Integrating,

U = 2
4mπV

h3
(2m)3/22

5
E

5/2
F

To relate this to N ,

N = 2
∫ EF

0
g(ε)dε.

we substitute the density of states

N = 2
∫ EF

0

4mπV

h3
(2mε)1/2dε

and integrate:

N = 2
4mπV

h3
(2m)3/22

3
E

3/2
F

The average energy is the energy per particle

ε̄ =
U

N
=

3

5
EF
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Example

Example 4

Metallic hydrogen can be produced by compressing liquid

hydrogen to extremely high pressure. This transition has been

observed when the density reaches 0.32× 106 mole m−3, at a

temperature of 3000 K. It is thought that in the metallic phase

the liquid comprises H+
2 ions and electrons. Were the electrons

in this liquid metal obeying classical or Fermi-Dirac statistics.
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Example

We need to compare the 3000 K temperature to the Fermi

temperature TF .

If the temperature is much higher than TF , the electrons would

obey classical statistics and behave as an ideal gas. If the

temperature is much smaller than TF , the electrons would obey

Fermi-Dirac statistics.

The Fermi temperature is related to the Fermi energy by

TF =
EF
kB

and the Fermi energy is given by

EF =
~2

2m

(
3π2N

V

)2/3

.

where m is the mass of the electron.
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Example

The hydrogen density 0.32× 106 mole m−3 is also the electron

density, since each molecule H2 converted to H+
2 gives one

electron. The number density is obtained by multiplying

Avogadro’s constant:

N

V
= (0.32× 106)× (6.022× 1023).

Substituting this and the other constants into the above

formulae, we get the Fermi temperature

TF = 141,000K.

The temperature of 3000 K is therefore much lower than the

Fermi temperature. So the electrons in metallic hydrogen

would obey Fermi-Dirac statistics, in the same way as normal

metals at room temperature.

61



Example

Example 5

One possible means of obtaining fusion energy is to implode

spherical capsules containing heavy hydrogen by irradiating

them with high power lasers. For fusion to occur the implosion

core needs to reach electron temperatures of the order of ∼ 1

eV, and the electron density needs to be of the order of

1033 m−3. Do we need to use Fermi-Dirac statistics to describe

the electrons, or are Maxwell-Boltzmann statistics sufficient?
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Example

We need to compare the 1 eV electron temperature to the

Fermi energy EF . The Fermi energy is given by

EF =
~2

2m

(
3π2N

V

)2/3

.

The number density N/V is 1033 m−3. Substituting into the

above formula, we get

EF = 3650 eV.

The electron temperature of 1 eV is much smaller than this.

Therefore the electrons would be described by Fermi-Dirac

statistics. They would behave like electrons in metal at room

temperature, and not as an ideal gas.
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Example

Note

Notice that the terms energy and temperature have been used

interchangeably.

A temperature of E = 1 eV, means that the temperature

would be

T = E/kB

in Kelvin.
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