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Phonons
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Specific heat capacities of solids

In 1912, Peter Debye, a Dutch physicist working in Germany,

produced a theory which predicts the heat capacity of a solid

correctly at high and low temperatures.
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Atoms vibrating in a solid

In Debye’s model, we think of the atoms in a solid as

connected by springs. They vibrate in 3D in a complicated way.

The problem can be simplified by treating the vibration as a

superposition of waves of different frequencies.

If we suppose that the atoms are fixed at the edge of the solid,

the frequency would be quantised. A quantum of this vibration

energy is called a phonon.
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Quantised thermal waves

We can count the number of states for the phonons, like we

did for atoms in an ideal gas, or electrons in a metal.

Unlike electrons, however, the exclusion principle does not

apply to phonons.

So each energy state can be occupied by any number of

phonons.

This means that we need yet another way to find the

macrostate. This was worked out by Bose and Einstein in the

1920s.
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Bose-Einsten Statistics

The method is similar to what we have used for the ideal gas.

There, we have made the assumption that there are many

more energy levels than there are particles. This has meant

that it is unlikely for two gas atoms to occupy the same state.

We do not make this assumption now, since we would be

particularly interested in the low temperature behaviour.

Since the exclusion principle does not apply to phonons, more

than one phonons can occupy the same state.
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Bose-Einsten Statistics

Suppose, in the energy bundle i, that there are gi levels and ni
phonons. The phonons are now completely free to arrange

themselves among the energy levels.

This means that we have ni + gi objects altogether in the

bundle. There are ni of one type, and gi of the other type. The

number of possible arrangements would be

Ωi =
(ni + gi)!

ni!gi!

The total number of arrangements for all bundles would be

obtained by multiplication of the number for every bundle:

Ω =
∏
i

(ni + gi)!

ni!gi!
.
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Bose-Einstein Distribution

Then we need to maximise ln Ω using the Lagrange multiplier

method.

Using the same constraints as before on the number of

particles N and the total energy U , the method would give the

following answer:

ni
gi

=
1

exp(−λ1 − λ2εi)− 1
.

where λ1 and λ2 are the Lagrange multipliers.

This has almost the same form as Fermi-Dirac distribution,

except that it is -1 instead of +1 in the denominator.

Following the same procedure that is used for Fermi-Dirac

distribution, we write the above result as

ni
gi

=
1

exp((εi − µ)/kBT )− 1
.
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Bose-Einstein Distribution

This is called the Bose-Einstein distribution function. It looks

almost the same as the Fermi-Dirac distribution function,

except that it has -1 in the deniminator instead of +1.

When we apply this to phonon, however, we need to make

some changes.
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Bose-Einstein Distribution

Phonons are not real particles like atoms or electrons. The

number of phonons is related to the vibration energy. The

number would increase when the temperature increases. At 0

Kelvin, there is no vibration, so there would be no phonons.

Because of this, there would be no constraint on the number N .

We really only have one constraint - that of constant energy U .

The Lagrange function is ln Ω + λU . N does not appear.

Maximising this function, we get

ni
gi

=
1

exp(−λεi)− 1
.

With the help of entropy as before, we would find

λ = −
1

kBT
.
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Phonon occupation number

Maximising Lagrange function, we have obtained

ni
gi

=
1

exp(εi/kBT )− 1
.

Following the same notations that we have used for ideal gas

and electrons, we rewrite:

ni as n(ε)dε and

gi as g(ε)dε.

This gives

n(ε)dε =
g(ε)dε

exp(ε/kBT )− 1

Next, we need a formula for the density of states g(ε).

Note that although we have previously used the same symbol

g(ε) for the particle in a 3-D box, the phonon density of states

would have a different formula.
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density of states for phonons

The vibrations in a solid is described by the wave equation

∂2ξ

∂x2
+
∂2ξ

∂y2
+
∂2ξ

∂z2
=

1

v2

∂2ξ

∂t2

where ξ is related to the displacement of the atoms.

http://en.wikipedia.org/wiki/Wave_equation

The solution has a similar form to the wave function for the

particle in a box:

ξ = eiωt sin kxx sin kyy sin kzz

where ω is the angular frequency.

Substituting the solution for ξ into the wave equation above,

we would get

k2
x + k2

y + k2
z =

ω2

v2
.
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density of states for phonons

Substituting into the wave equation would be easier if we work

out each of the partial derivatives first. For example,

differentiating twice with respect to x, we would get

∂2ξ

∂x2
= eiωt (−k2

x sin kxx) sin kyy sin kzz = −k2
xξ.

Likewise with respect to y and z. Differentiating twice with

respect to t, we would get

∂2ξ

∂x2
= (−ω2eiωt) sin kxx sin kyy sin kzz = −ω2ξ.

Now we can see that substituting into the wave equation gives

−k2
xξ − k2

yξ − k2
z ξ =

1

v2
(−ω2ξ),

which is

k2
x + k2

y + k2
z =

ω2

v2
.
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density of states for phonons

Defining k as the magnitude of the wave vector, we have

k2 = k2
x + k2

y + k2
z

and

k2 =
ω2

v2
.

The boundary condition requires ξ to be zero at the walls.

Therefore, in the same way as the particle in the box, the

wavevector would be quantised:

kx =
nxπ

a
, ky =

nyπ

a
and kz =

nzπ

a
.

Substituting these into

k2 = k2
x + k2

y + k2
z

gives

k2 =
π2

a2
(n2
x + n2

y + n2
z)

13



density of states for phonons

Rearranging,

k2a2

π2
= n2

x + n2
y + n2

z .

We have also obtained above the dispersion relation

k =
ω

v
.

Substituting,

ω2a2

v2π2
= n2

x + n2
y + n2

z .

We may now follow the same method that we have used for
ideal gas to count the states. Comparing with the equation for
a sphere

R2 = n2
x + n2

y + n2
z

the total number of states with frequency less than ω is given
by the octant of the sphere:

G(ω) =
1

8

(
4π

3
R3
)

=
π

6

(
ωa

vπ

)3
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density of states for phonons

Differentiating the number of states,

G(ω) =
π

6

(
ωa

vπ

)3

we get the density of states:

g(ω) =
V ω2

2π2v3

where V is the volume a3.
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About polarisation

Actually, we are not quite there yet.

There reason is that each state correspond to a wave, and a

wave in a solid can have 2 transverse polarisations, and 1

longitudinal polarisation.

Previously, we have only counted the states in terms of the

possible wavevector (nx, ny, nz). In the case of solids, the 3

different directions of vibrations are in fact different states with

the same wavevector (nx, ny, nz).

So we have to multiply by 3 to get the correct density of state:

g(ω)dω = 3×
V ω2dω

2π2v3
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The Debye Frequency

There is one more practical point to note. In a solid, there is a

limit to the highest phonon frequency.

This is related to the fact that the wavelength cannot possibly

be shorter than the distance between atoms.

Let this highest frequency be ωD.

In a solid with N identical atoms, there are 3N energy states, or

normal modes. This is when we count every possible frequency,

and every possible ”direction of vibration” for each frequency.

This can be proven mathematically, but we shall skip that. We

can find ωD by integrating the density of states:∫ ωD
0

g(ω)dω =
∫ ωD

0

3V ω2dω

2π2v3
= 3N
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The Debye Frequency

This equation ∫ ωD
0

g(ω)dω =
∫ ωD

0

3V ω2dω

2π2v3
= 3N

can then be solved to find the Debye frequency. Integrating

gives

V ω3
D

2π2v3
= 3N

Solving for ωD gives the Debye frequency:

ωD =

(
6Nπ2v3

V

)1/3
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The phonon distribution

As we have shown earlier, the distribution of phonons is given

by

n(ε)dε =
g(ε)dε

exp(ε/kBT )− 1

We shall express this in terms of frequency ω as well. The

phonon energy ε is given by

ε = ~ω.

This is a result of the phonon mode

ξ = eiωt sin kxx sin kyy sin kzz

behaving as a simple harmonic oscillator. The phonon mode is

simply vibration of the atoms co-ordinated in a particular way.
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The phonon distribution

So the energy must take the form

En =
(
n+

1

2

)
~ω.

Each step or quantum is ~ω, which would be interpreted as a

phonon particle in our statistical treatment. The relation

ε = ~ω

would be justified by the fact that its predictions agree with

experiments.

In terms of the frequency ω, the phonon distribution is then

given by

n(ω)dω =
g(ω)dω

exp(~ω/kBT )− 1
.
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Debye’s theory for Heat capacity of solid

The phonon distribution is given by

n(ω)dω =
g(ω)dω

exp(~ω/kBT )− 1
.

We can multiply by ~ω to get the energy at this frequency

interval:

~ωn(ω)dω =
g(ω)dω

exp(~ω/kBT )− 1
.

The total energy is then

U =
∫ ωD

0
~ωn(ω)dω =

∫ ωD
0

~ωg(ω)dω

exp(~ω/kBT )− 1
.

We have found earlier that the density of states is:

g(ω) = 3×
V ω2

2π2v3
.

Substituting into the integral for the total energy above ...
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Debye’s theory for Heat capacity of solid

We get:

U =
3V ~

2π2v3

∫ ωD
0

ω3dω

exp(~ω/kBT )− 1

At low temperature, it can be shown that this is proportional to

T4. This would imply that the heat capacity C is proportional

to T3. (This has been mentioned in the topic on the specific

heat of electrons in metal.)

At high temperatures, the heat capacity tends to 3NkB.
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Is verified at high temperature

In 1912, Debye measured the high temperature behaviour of

copper.

He showed that the heat capacity did tend to 3NkB, as he had

predicted.
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And verified at low temperature

In 1953, at Purdue University, Keesom and Pearlman measured
the low temperature behaviour of potassium chloride. This
picture is a sketch of the results.

As predicted by Debye, the heat capacity was indeed
proportional to T3.
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Photons
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Radiation from a very hot object

When an object gets very hot, it can give out light.

The temperature of a volcano lava flow can be estimated by

observing its color. The result agrees well with the measured

temperatures of lava flows at about 1,000 to 1,200 deg C.

http://en.wikipedia.org/wiki/Black_body
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An ideal black body

The amount of radiation emitted depends on the nature of the
object - its colour, whether it is smooth or rough, etc.

An ideal black body is one that absorbs all the radiation that
falls on it.

No real material can do this. Soot is about the best, absorbing
all but 3%.

In 1859 Kirchhoff had a good idea: ”a small hole in the side of
a large box is an excellent absorber, since any radiation that
goes through the hole bounces around inside, a lot getting
absorbed on each bounce, and has little chance of ever getting
out again.”

http://galileo.phys.virginia.edu/classes/252/black_body_radiation.html

The energy of the absorbed radiation reaches equilibrium
among different frequencies in the cavity. This results in a
characteristic spectrum that would be emitted again through
the hole.
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Black Body Spectrum

http://en.wikipedia.org/wiki/Black_body

As the temperature decreases, the peak of the black-body

radiation curve moves to lower intensities and longer

wavelengths. The black-body radiation graph is also compared

with the classical model of Rayleigh and Jeans.
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Photons in a box

We can derive a formula for the black body radiation by

considering the energies of photons in a box (like a idea black

body).

This follows steps very similar to the Debye theory for phonons.

The wave equation for photons is derived from Maxwell’s

equation:

∂2E

∂x2
+
∂2E

∂y2
+
∂2E

∂z2
=

1

c2
∂2E

∂t2

It has the same form as the wave equation for vibration of

atoms, except that the speed is now that of light instead of

sound.

So we would expect that the same formula for the density of

states can be used.
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Photons in a box

Like phonons, the photon number is not fixed. We get few

photons when the box is cold, and more photons when it is hot.

Unlike phonons, there is no upper limit to the frequency (no

Debye frequency). The wavelength in a solid cannot be shorter

than the distance between atoms. The electromagnetic wave in

a box has no such limit.

Finally, phonons in a solid can have 3 polarisations: 2

transverse and 1 longitudinal (like sound). Photons can only

have 2: both transverse (e.g. light).
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Counting photon states

Recall that for phonons, the density of states is give by:

g(ω)dω = 3×
V ω2dω

2π2v3

where the factor of 3 comes from the 3 polarisations of a

phonon, 2 transverse and 1 longitudinal.

Since photons only have 2 polarisations, both transverse, the 3

should be replaced by a 2:

g(ω)dω = 2×
V ω2dω

2π2c3

where the sound speed v is replaced by light speed c.
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Distribution of photon number

Like phonons, each energy state can be occupied by any

number of photons.

So it obeys Bose-Einstein statistics.

The number density is therefore given by the same formula:

n(ε)dε =
g(ε)dε

exp(ε/kBT )− 1

So the number of photons in a given frequency interval is

n(ω)dω = 2×
V ω2dω

2π2c3
×

dω

exp(~ω/kBT )− 1
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Distribution of photon energy

The energy of a photon is ~ω. The energy in the frequency

interval dω is then

~ωn(ω)dω = 2× ~ω ×
V ω2dω

2π2c3
×

dω

exp(~ω/kBT )− 1

The energy density is given by:

u(ω) = ~ωn(ω) =
V ~ω3

π2c3
1

exp(~ω/kBT )− 1
.

This is essentially Planck’s law for black body radiation.

Integrating gives the total energy:

U =
π2V k4

B

15~3c3
T4

It can be shown that this leads to Stefan’s law of radiation:

η = σT4

for radiation emitted by an object at a temperature T .
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Example

The cosmic microwave background is an example of blackbody

radiation. The spectrum has been measured. Planck’s

radiation formula is then fitted to the spectrum.

Using a temperature value of 2.74 K in the formula was found

to fit the measurement well. This tells us that deep space has

a temperature of 2.74 K.
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Example

In the same way, Planck’s formula may be fitted to the sun’s

spectrum.

(http://en.wikipedia.org/wiki/Sunlight)

A 5800 K temperature gives a reasonable fit. However, part of

the fitted curve deviates from measured data. This could be

due to absorption by atmosphere, or emission from other

sources.
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Example

The radiation spectrum of a higher temperature object peak at
higher frequency.

(http://www.launc.tased.edu.au/online/sciences/physics/blackbody1.html)

For example, human emit radiation with the peak in the
infrared wavelength 9.3 µm. A hot plate at 400 ◦C has a peak
at 4.3 µm, with a bit in visible red. That is why it looks red
hot.

36



Worked Examples
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Example

Example 1

Sketch the density of states as a function of frequency for 1, 2

and 3-D solids in the Debye approximation. Consider a 2-D

solid. Show according to the Debye theory that the heat

capacity varies as T2 at low temperature. In graphite it is found

that CV ∝ T2.4 at low temperature. Explain this behaviour.
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Example

Recall the steps leading to the density of states of a phonon in

a 3-D solid. First, we obtain the quantised energy states:

ω2a2

v2π2
= n2

x + n2
y + n2

z .

Then we compare with the equation for a sphere

R2 = n2
x + n2

y + n2
z

For positive integers (nx, ny, nz), the total number of states

with frequency less than ω is given by the octant of the sphere:

G(ω) =
1

8

(
4π

3
R3
)

=
π

6

(
ωa

vπ

)3

Differentiating, we get the density of states:

g(ω) = 3×
V ω2

2π2v3

where V is the volume a3. There is an extra factor of 3

because in 3-D, there can be 3 modes for each phonon

frequency: 2 transverse and 1 longitudinal.
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density of states for phonons

Now we repeat the steps for 2-D. First, we obtain the
quantised energy states (no nz):

ω2a2

v2π2
= n2

x + n2
y .

Then we compare with the equation for a circle (not sphere)

R2 = n2
x + n2

y

For positive integers (nx, ny), the total number of states with
frequency less than ω is given by the quadrant of the circle (not
octant):

G(ω) =
1

4
(πR2) =

π

4

(
ωa

vπ

)2

Differentiating, we get the density of states:

g(ω) = 2×
Aω

2πv2

where A is the area a2 (not volume). There is an extra factor
of 2 because in 2-D, there can be 2 modes for each phonon
frequency: 1 transverse and 1 longitudinal.
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Example

Finally we repeat the steps for 1-D. First, we obtain the

quantised energy states (no ny):

ω2a2

v2π2
= n2

x.

Then we compare with the equation for a line (not circle)

R2 = n2
x

For positive integers nx, the total number of states with

frequency less than ω is given by half of the line (not quadrant):

G(ω) =
1

2
(2R) =

ωa

vπ

Differentiating, we get the density of states:

g(ω) = 1×
L

πv

where L is the length a (not area). There is no additional

factor because in 1-D, there can be only be 1 mode for each

phonon frequency: the longitudinal.
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Example

Summarising, we have obtained the following results for the

density of states:

1-D: g(ω) = constant

2-D: g(ω) ∝ ω
3-D: g(ω) ∝ ω2

The internal energy is given by:

U =
∫ ωD

0

~ωg(ω)dω

exp(~ω/kBT )− 1
.

In 2-D,

g(ω) ∝ ω.

So

U ∝
∫ ωD

0

ω2dω

exp(~ω/kBT )− 1
.
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Example

We have obtained

U ∝
∫ ωD

0

ω2dω

exp(~ω/kBT )− 1
.

Let

x =
~ω
kBT

.

At low temperature, T → 0 and x→∞. The integral for U can

be written as

U ∝ T3
∫ ∞

0

x2dx

ex − 1
.

The factor of T3 appears because of the factor of T in the

substitution for ω:

ω =
kBT

~
x.
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Example

Since the definite integral here

U ∝ T3
∫ ∞

0

x2dx

ex − 1
.

is a constant, we have

U ∝ T3.

Differentiating, the heat capacity is

CV ∝ T2.

Graphite has a layered structure. Each layer consists of carbon

atoms strongly bonded, with weak forces between layers.

Vibration (like sound) would propagate much faster along the

layer than across the layers. So it can be thought of as

intermediate between 2-D and 3-D.

This explains why the heat capacity of graphite is

CV ∝ T2.4.
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Example

Example 2

According to Debye’s theory, the total energy of phonons in a

solid is given by

U =
3V ~

2π2v3

∫ ωD
0

ω3dω

exp(~ω/kBT )− 1
.

Show that at low temperatures, i.e. T � ~ωD/kB, Debye’s

theory predicts that the heat capacity of a solid is proportional

to T3.

[ You are given that ∫ ∞
0

x3

ex − 1
dx =

π4

15
.

]
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Exercises

To use the formula given, let the argument of the exponential

function be x:

x =
~ω
kBT

.

Make frequency the subject:

ω =
kBT

~
x.

Then substitute into the integral for the energy:

U =
3V ~

2π2v3

(
kBT

~

)4 ∫ xD
0

x3dx

ex − 1

where the new limit is related to the old one by the substitution

formula:

xD =
~ωD
kBT

.
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Example

The condition given is T � ~ωD/kB. Rearranging, we have

1�
~ωD
kBT

.

The right hand side is just xD, so

1� xD.

This means xD is large. We may approximate the integral by

replacing the limit by infinity:

U ≈
3V ~

2π2v3

(
kBT

~

)4 ∫ ∞
0

x3dx

ex − 1
.

Then using the formula given,

U =
3V ~

2π2v3

(
kBT

~

)4 π4

15
.

47



Example

We have found the total energy.

U =
V π2k4

BT
4

10~3v3

Note that this is proportional to T4. To get the heat capacity,

we differentiate with respect to temperature T :

C =
2V π2k4

BT
3

5~3v3

which is proportional to T3.

This answers the question.
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Example

Some remarks:

Going back to our approximation, how large must xD be for the

approximation ∫ xD
0

x3dx

ex − 1
≈
∫ ∞

0

x3dx

ex − 1

to be valid? We can get some idea if we carry out the

integration numerically:

xD
∫ x3dx
ex−1 error

1 0.225 96%
10 6.432 1%
100 6.494 10−18

∞ π4/15 0

As long as xD is more than 10, the approximation would be

better than 1%.
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Example

Recall that xD is related to the Debye frequency by

xD =
~ωD
kBT

,

This means that for 1% accuracy, we should have

~ωD
kBT

> 10.

Rearranging, we get

T <
θD
10

where

θD =
~ωD
kB

.

θD is called the Debye temperature, and can be used as a

reference when we want to tell whether a temperature is high

or low. Note that in the numerator is ~ωD, which is the highest

possible phonon energy.
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Exercises

Example 3

The energy distribution of a gas of photons in a box given by:

u(ω)dω =
V ~
π2c3

dω
ω3

exp(~ω/kBT )− 1
.

Wien’s displacement law for black body radiation is given by

λmax =
b

T
,

where λmax is the wavelength of the peak of the radiation

intensity, and b is 2.90× 10−3 m.K.

Derive Wien’s displacement law from the energy distribution.

51



Example

We must rewrite the distribution in terms of wavelength λ:

ω = 2πf = 2π
c

λ

Differentiating,

dω = −
2πc

λ2
dλ.

Substituting into the energy distribution:

u(λ)dλ =
V h

π2c2λ5

dλ

exp(hc/λkBT )− 1
.

To find the maximum, we can ignore the constants in u(ω) and

just focus on the part that depends on ω:

1

λ5

1

exp(hc/λkBT )− 1
.

To find the maximum, differentiate this ...
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Example

and set to zero:

−
5

λ6

1

exp(hc/λkBT )− 1
−

1

λ5

(−hc/λ2kBT ) exp(hc/λkBT )

[exp(hc/λkBT )− 1]2
= 0.

Multiplying by λ6[exp(hc/λkBT )− 1]2,

−5[exp(hc/λkBT )− 1] +
hc

λkBT
exp(hc/λkBT ) = 0.

We can simplify this by defining

x =
hc

λkBT
.

Substituting, we get

−5(ex − 1) + xex = 0.
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Example

If we plot each side of the equation,

5(ex − 1) = xex.

we see that there are 2 solutions.

We can solve this numerically. The answers are

x1 = 0 and x2 = 4.965.
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Example

The nontrivial solution is

x2 = 4.965.

Substituting this into the definition for x,

x =
~

λkBT
.

or making λ the subject, we get

λ =
hc

x2kBT
.

Comparing this with the displacement law,

λmax =
b

T
,

we see that

b =
hc

x2kB
.

Substituting the constants and calculating, we get the Wien’s

displacement constant 2.90× 10−3 m.K.
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Useful Integrals
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Useful Integrals

For Debye model, to find heat capacity at low temperature;

and for black body radiation, to find Stefan’s law:∫ ∞
0

x3

ex − 1
dx =

π4

15
.

For liquid helium-4, later in the course:-

to find condensation temperature of Bose Einstein condensate:∫ ∞
0

x1/2

ex − 1
dx = 2.315

to the find heat capacity:∫ ∞
0

x3/2

ex − 1
dx = 1.783

57


