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The dilution refrigerator

Cooling by evaporation of helium-4 liquid can only reach about

1.3 K. Below this temperature, the vapour pressure is very

small, so that very little would evaporate.

It is possible to overcome this limitation using a mixture of

liquid helium-3 and liquid helium-4.

The way is to ”evaporate” pure liquid helium-3 into the

mixture.

This is done in the dilution refrigerator. Using this method, it

is possible to reach into the milliKelvin range.

Statistical Physics 1 Oct - Dec 2009



Properties of the liquid 3He-4He mixtures

Statistical Physics 2 Oct - Dec 2009



Liquid 3He-4He Mixtures

To understand the dilution refrigerator, we start with the phase
diagram. This tells us how the mixture behaves at different
concentrations and temperatures.

D.S. Betts: An Introduction to Millikelvin Technology (Cambridge University Press, 1989)
J. Wilks, D.S. Betts: An Introduction to Liquid Helium, 2nd edn. (Clarendon, Oxford 1987)
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The Phase Diagram

Let x be the fraction of 3He atoms in the 3He-4He mixture. In

the figure, x is the horizontal axis.

At point A: x = 0 means pure 4He.
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The Phase Diagram

The Lambda line indicates the temperature at which superfluid
transition takes place for a given x.

At point B: At x = 0, the Lambda line shows that superfluid
transition takes place at the temperature T = 2.2 K.
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The Phase Diagram

At point C: x = 1 is pure 3He.

At point D: The Lambda line stops at the shaded region. So it

is not clear if pure 3He (at C) can become superfluid. In fact it

can, at the much lower temperature of 2.5 mK.
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The Phase Diagram

Along the dashed line: Suppose we start with a mixture at a
concentration and temperature at point E. When this is cooled
down to the temperature at point F, it would change to a
superfluid.

If it is cooled further, it would reach the shaded region at G.
What if it is cooled below that to a temperature at point H?
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The Phase Diagram

The shaded region is meant to indicate that it is not possible

for the mixture to exist at a concentration and temperature in

that region.

For a temperature at point H, it is only possible to have

concentrations that are either smaller than that at point J, or

higher than at point K.
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The Phase Diagram

So if a mixture is cooled down to a temperature at H, it would

separate into two layers.

One layer has the concentration at J, and the other layer has

the concentration at K.
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The Phase Diagram

At J, the concentration x of 3He is lower, and the mixture is

called the dilute phase.

At K, the concentration is higher, and it is called the

concentrated phase.
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The Phase Diagram

Because 3He is less dense than 4He, the concentrated phase

floats on top of the dilute phase.

Note that the dilute phase is superfluid, whereas the

concentrated phase is normal fluid.
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The Phase Diagram

At point L: When we reach a temperature below 0.1 K, the
highest concentration possible is x = 6.6%.

If we start at a higher temperature and concentration and cool
down below 0.1 K, it would always separate into 2 layers:
1. One layer has 6.6% concentration in 3He - at L.
2. The other is nearly pure 3He - at C.
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The Phase Diagram

At point L: Note that in the dilute phase, the solubility of 3He

would remain 6.6% even as the temperature approaches 0 K.

This is the property that makes the dilution refrigerator

possible.
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Cooling by dilution
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Cooling by dilution

Suppose that we start with a layer of pure helium-3 floating on
a layer of pure helium-4 at 0.1 K.

Helium-3 would diffuse into the helium-4 layer below. The
reverse would not happen, as we know from the phase diagram.

When this happens, the temperature would fall.

We may compare this to evaporation. Instead to vaporising to
the vacuum above, the helium-3 ”vaporises” into the liquid
below.

In this case, it is mixing instead of evaporation.
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Cooling by dilution

By mixing into the lower layer, the helium-3 above is effectively

being diluted. Hence the term ”dilution cooling.”

This continues, and the concentration of helium-3 in the in the

bottom layer increases until it reaches 6.6%. Then the mixing

stops.

In order to continue cooling, we must somehow remove the

helium-3 dissolved in the dilute phase. This also has an analogy

with cooling by evaporation, where we have to pump out the

vapour to prevent it from being saturated.
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Cooling power

We have previously seen that the vapour pressure of helium

falls exponentially with decreasing temperature.

The vapour pressure, P , is directly related to the rate at which

the helium atoms vaporise from the liquid. Therefore it is also

directly related to the rate of removing heat from the liquid:

Q̇ ∝ P ∝ e−1/T

Q̇ is also called the cooling power, and is used to compare the

performance of different refrigerators.

So the cooling power of the evaporation refrigerator falls

exponentially with decreasing temperature.
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Cooling power

In dilution cooling, the helium-3 concentration , x, in the dilute

phae is directly related to the rate at which helium-3 leaves the

concentrated phase.

To determine the rate at which heat is removed, we must

consider the heat change of mixing, ∆H. As we shall see later,

this heat change is proportional to T2.

The cooling power of helium-3 dilution is therefore

Q̇ ∝ x∆H ∝ T2
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Cooling power

We have seen that the cooling power

Q̇ ∝ x∆H

depends on the concentration x.

G.E. Watson, et al: Phys. Rev. 188, 384 (1969)

This figure shows that it is possible to increase the limiting
concentration above 6.6% by increasing the pressure. This
offers one way of increasing the cooling power.
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Cooling power

The figure compares the cooling power of helium-3 evaporation,

and 3He-4He dilution, for the same helium-3 circulation rate.

O.V. Lounasmaa: Experimental Principles and Methods Below 1K (1974)

From previous reasonings, we can understand why the cooling

power for the evaporation falls much faster than that for

dilution.

Below 0.3 K, the dilution refrigerator clearly has a much higher

cooling power than the evaporation refrigerator.
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3He-4He mixtures as Fermi liquids
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3He-4He mixtures as Fermi liquids

It is possible to derive the heat change of mixing. This would

be useful for estimating the cooling power.

Helium-3 has nuclear spin I = 1/2. It is a fermion. It obeys the

Fermi-Dirac statistics. So we hope that the same formula for

the heat capacity of electrons can be used for the 3He-4He

mixture:

C3 =
π2

2

T

TF
R at T � TF

where C3 denotes the heat capacity of helium-3.

From the lectures on electrons in metal, we have seen that the

Fermi temperature TF = EF/kB, and the Fermi energy is

EF =
~2

2m3

(
3π2N

V

)2/3

where m3 denotes the mass of the helium-3 atom.
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3He-4He mixtures as Fermi liquids

The problem with the formulae for electrons is that they are

derived assuming that the particles do not interact with one

another.

This is assumption is not valid here. In the dilute phase, the

helium-3 atoms are very close to the helium-4. In the

concentrated phase, the helium-3 are very close to themselves.
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3He-4He mixtures as Fermi liquids

It turns out that the helium-3 atoms in the dilute phase can be
approximated as heavier particles in a vacuum.

For example, at 6.6% concentration, if we use a value of
2.45m3 for the mass of helium-3 instead of the actual m3, the
formulae would still give a reasonable answer.

The higher mass is called the effective mass, and often denoted
by m∗. This has been demonstrated experimentally in 1966.

A. C. Anderson, et al, Physical Review Letters, vol. 16 (1966), pp. 263-264

(For pure helium-3, m∗ = 2.78m3).
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3He-4He mixtures as Fermi liquids

Another point to note for the formula

C3 =
π2

2

T

TF
R at

is the condition that T � TF .

For electrons in metal, we have seen that the Fermi energy is
much higher than kBT at room temperature.

What is the Fermi temperature for helium-3 in the dilute phase?
Is it still higher than the temperature we are interested in?

At 6.6% concentration, and using the effective mass of
m∗ = 2.45m3, we would find using the formulae that TF is
about 1 K.

The dilution refrigerator typically operates below 0.1 K. This
should be well within the valid range for the Fermi gas
formulae.
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Heat change of mixing
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Heat change of mixing

To derive the heat change of mixing, we need a few ideas and

formulae from thermodynamics. Since the movement of

particles from concentrated to dilute phase is essentially a

change in phase, we need the condition for phase equilibrium:

µC = µD

where µ is the chemical potential, subscript C is for

concentrated phase, and D for the dilute phase.

The chemical potential is given by

µ = H − TS

where H is the enthalpy per mole, and S the entropy per mole

of the phase.

I shall start with a quick summary on the basic physics behind

the equilibrium condition.
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Heat change of mixing

The enthalpy H is given by

H = U + pV,

where U is the internal energy, p the pressure and V the
volume. So

µ = H − TS = U + pV − TS.

The equilibrium equation is a statement that the change in
chemical potential if one phase is changed to the other, is zero.
This may also be expressed as:

∆µ = ∆U + p∆V − T∆S = 0.

This assumes that pressure and temperature are the same in
both phases.

There would always be a pressure and a temperature gradient
in the refrigerator, since the concentrated phase is being cooled
and it is on top. But since the volumes are small and the two
phases are in close contact, we shall assume that it is
approximately true.
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Heat change of mixing

The equilibrium condition is:

∆U + p∆V − T∆S = 0.

To understand this physically, note that for a reversible change,

T∆S = ∆Q, the heat input. p∆V is the work done by one

phase if it expands on changing to the other phase.

So the left hand side is a statement that the total energy of

one mole of a phase remains the same, when it changes into

another phase.

If this is the case, then the two phases would remain in

equilibrium.

If, on the other hand, there is a net release in energy when one

phase changes into the other, then this change would take

place, and there would be no equilibrium.
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Heat change of mixing

Returning to the equilibrium condition

µC = µD,

since µ = H − TS, we may write this as

HC − TSC = HD − TSD
Remember that subscript C is for concentrated phase, and D

for the dilute phase. The enthalpy change of mixing is

therefore:

HD −HC = TSD − TSC
This is the heat change of mixing that we want to estimate.

To do so, we need to find the entropies SC and SD in both

phases.
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Heat change of mixing

What we need the entropy in each phase. This can be

determined from the specific heat capacity as follows.

Conservation of energy, or the first law of thermodynamics,

tells us that:

dQ = dU + dW

dW is the mechanical work done - by expansion or contraction.

Since we have a liquid, the volume change is very small. If we

neglect this, we have

dQ = dU

Since dS = dQ/T , the entropy is given by integrating:

S =
∫
dQ

T
=
∫
dU

T
=
∫
C

T
dT

In order to obtain the entropy, we need know the specific heat

capacity as a function of temperature.
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Heat change of mixing

We start with the concentrated phase, which we shall treat as

pure helium-3.

J.C. Wheatley: Am. J. Phys. 36, 181 (1968)
A.C. Anderson, et al: Phys. Rev. Lett. 16, 263 (1966)

The graph above shows the experimental measurements on the

specific heat for pure helium-3 on top, and two mixtures below.
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Heat change of mixing

By fitting the data, we obtain for pure helium-3 an approximate
formula for the specific heat:

C3 = 22T J/(mol K)

Note the graph only shows measurement up to 40 mK, so this
formula is only valid below that.

The entropy for the concentrated phase is therefore

SC =
∫ T

0

C3(T ′)

T ′
dT ′ =

∫ T
0

22dT ′ = 22T J/(mol K)

In principle, we can use the same method to find the entropy
for helium-3 in the dilute phase. Unfortunately, we would need
this for different concentrations, and there are not many
measurements available.

We have seen earlier that the specific heat formulae for a Fermi
gas can be used ...
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Heat change of mixing

In the dilute phase, the specific heat for helium-3 may be

estimated by the Fermi gas formula

C3 =
π2

2

T

TF
R

Suppose that the concentration of the mixture in a dilution

refrigerator is close to 6.6%. Using the effective mass of

m∗ = 2.45m3, and the formula for the Fermi energy, we would

get

C3 = 106T J/(mol K)

So the entropy for helium-3 in the dilute phase is

SD =
∫ T

0

C3(T ′)

T ′
dT ′ =

∫ T
0

106dT ′ = 106T J/(mol K)
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Heat change of mixing

We have obtained the entropies in the two phases:

SC = 22T J/(mol K)

SD = 106T J/(mol K)

We can now find the heat change of mixing:

HD −HC = T (SD − SC) = T (106T − 22T ) = 84T2 J/mol

Note that this change is positive. This implies an increase in

internal energy.

Because of conservation of energy, heat energy has to be

absorbed from the surrounding. Hence the cooling.
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Heat change of mixing

The cooling power is then

Q̇ = ∆H = ṅ3(HD −HC) = 84ṅ3T
2 W

where ṅ3 is the number of moles per second of helium-3

moving from concentrated to dilute phase.

The cooling power is proportional to T2, as we have seen early

on.

For typical values of ṅ3 = 100µmol s−1 and T = 10 mK, we

find

Q̇ = 1 µW.
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Realisation of the dilution refrigerator
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Realisation of the dilution refrigerator

The use of the dilution process for cooling is similar in concept

to helium evaporation:

1. In evaporation, cooling takes place when helium atoms move

from the liquid to the vapour phase.

2. In dilution, cooling takes place when helium-3 atoms move

from the concentrated to the dilute phase.
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Realisation of the dilution refrigerator

In dilution cooling, there are a number of practical issues:

1. One is that the dilute phase is below the concentrated

phase, so helium-3 atoms move down instead of up.

2. Another is the need to find a way to ”pump” out the

helium-3 from the dilute phase.
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Realisation of the dilution refrigerator

This is a schematic diagram. It would be housed inside a

vacuum chamber that is immersed in a helium-4 bath at 4.2 K.

Pobell (2007)
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Realisation of the dilution refrigerator

The mixing chamber at the bottom contains the two layers -

concentrated phase on top, dilute phase below.
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Realisation of the dilution refrigerator

A tube leads from the dilute phase to a chamber at the top,

called the ”still.”

The still is connected to a pump.
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Realisation of the dilution refrigerator

The dilute phase is pushed up from the mixing chamber by

pressure, and partly fills the still.
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Realisation of the dilution refrigerator

The still is connected to a pump.
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Realisation of the dilution refrigerator

In the still, the temperature is maintained at 0.7 K. There, the

dilute phase vaporises.

What happens is essentially fractional distillation. The vapour

would contain a higher concentration of the lower boiling

fraction. In this case, that would be helium-3.

The resulting vapour has more than 90% of helium-3. As a

result, the concentration of helium-3 in the mixture falls.
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Realisation of the dilution refrigerator

The vapour is high concentrated in helium-3. As the vapour is

pumped out, the helium-3 concentration in mixture that is in

the still falls.

This causes the helium-3 from the mixture in the mixing

chamber below to diffuse up to the still above.

This is how helium-3 in the mixture that is in the mixing

chamber is ”pumped” out.
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Realisation of the dilution refrigerator

To maintain a continuous flow of helium-3, we must replace the

helium-3 in the mixing chamber continuously. In order to do

this, the helium-3 that is pumped out from the still is recycled.

It is passed back in to the mixing chamber through a tube.

This tube is represented by the vertical black line on the left

side of the diagram that runs through all the chambers.
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Realisation of the dilution refrigerator

But first. the recycled helium-3 gas must be precooled to 1.5

K. This is done in a helium-4 bath that is not shown.

In order to liquify the helium-3 gas, the pressure must be

increased. This is achieved by making a section of the tube

very narrow.

This narrow section is labeled the Main Flow Impedance in the

diagram.
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Realisation of the dilution refrigerator

The flow impedance increases the pressure of the helium-3 gas.

As a result, it becomes a liquid before it enters the still.

In the still, the tube is designed to be in close thermal contact

with the mixture. This helps to cool down the incoming

helium-3 liquid.

This part of the tube is labeled Still Heat Exchanger in the

diagram.
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Realisation of the dilution refrigerator

After leaving the still, the tube carries the incoming liquid

helium-3 down to the mixing chamber.

On its way down, the tube is designed to be in close contact

with the cold mixture leaving the mixing chamber. This helps

to cool the incoming helium-3 further.

This part of the tube is labeled Heat Exchangers in the

diagram.
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Realisation of the dilution refrigerator

It should be mentioned that heat exchanger is a very important

part of any low temperature refrigerator.

By fulling ustilising the ”cold” coming out from the mixing

chamber, the heat exchange saves a lot of time and a lot of

liquid helium.

Y. Oda, G. Fujii, T. Ono, H. Nagano: Cryogenics 23, 139 (1983)

In this way, it allows the refrigerator to cool down faster, and

to reach a lower temperature.
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Realisation of the dilution refrigerator

This is a more compelte schematic diagram. It shows the

surrounding vacuum chamber, helium-4 bath, pumps and other

things that are needed.

J.C. Wheatley, O.E. Vilches, W.R. Abel: Physics 4, 1 (1968)
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Examples of dilution refrigerators
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Examples of dilution refrigerators

This is a dilution refrigerator used in the semiconductor physics

group in the Cambridge physics department.

http://www.phy.cam.ac.uk/research/sp/cryo.php

You should be able to tell from the temperatures indicated

what the various parts are.
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Examples of dilution refrigerators

This is a dilution refrigerator used to test detectors for dark

matter coming to earth from outer space.

Case Western Reserve University (USA)
http://cdms.case.edu/learn/caselearn/fridge.html

On the left is the dilution refrigerator.

On the right, the refrigerator is inserted into a helium cryostat.

Statistical Physics 55 Oct - Dec 2009



Examples of dilution refrigerators

This is a dilution refrigerator used for experiments in quantum

computing.

T. Fujisawa, NTT Technical Review, Vol. 6 No. 1 Jan. 2008
https://www.ntt-review.jp/archive/index.html

Notice how the sample is attached to the lower end of the

refrigerator.
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What we have learnt so far.

1. The 3He-4He mixture undergoes phase separation when

cooled below 0.87 K, giving 2 phases.

2. The specific heat of a helium-3 atoms is higher in the dilute

phase than in the concentrated phase. If the atom goes from

the concentrated to the dilute phase, it results in the

”production of cold,”

3. There is a non-zero solubility of 3He in 4He even at 0 K.

This leads to a cooling power which decreases with T2. This is

much higher than the cooling power of evaporation, which falls

exponentially.

4. In the vapour above a 3He-4He mixture, the vapour pressure

of helium-3 is much higher than that of helium-4. This makes

it possible to circulate nearly pure helium-3.
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Worked Examples
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Example 1

Calculate the Fermi temperature of liquid helium-3.

[You are given the following:

The volume Vm of 1 mole of liquid helium-3 is 36.84 cm3.

The effective mass is m∗ = 2.78m3,

where m3 is the mass of the helium-3 atom.

The atomic mass unit u is 1.6605× 10−27 kg.]
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The Fermi temperature is given by

TF =
EF
kB

,

where the Fermi energy is

EF =
~2

2m

(
3π2N

V

)2/3

.

Using the molar volume Vm that is given, N would be the

Avogadro’s constant NA.

The mass of the helium-3 atom is 3u, and the mass m in the

formula for the Fermi energy would be the effective mass

m∗ = 2.78m3 = 2.78× 3u,

where u is the atomic mass unit.
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Substituting all these values into the Fermi energy equation, we

find

EF = 5.31× 10−23 J.

Then the Fermi temperature is

TF =
EF
kB

= 1.79 K.
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Example 2

At which temperature would the Fermi heat capacity of liquid

helium-3 reach the classical ideal gas value

CP =
5

2
R

if its heat capacity continued to vary with temperature, as

expressed by the Fermi gas formula

C3 =
π2

2

T

TF
R.

[You are given the following:

The Fermi temperature TF of liquid helium 3 is 1.79 K.

The ideal gas constant R = 8.315 J/(mol K).]
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Substituting the given values of TF and R into the Fermi gas

formula

C3 =
π2

2

T

TF
R,

we get

C3 = 22.9T [J/(mol.K)].

This would become equal to the classical value

CP =
5

2
R

when

22.9T =
5

2
R.

Solving for T gives 0.91 K.

Remark: Notice that this smaller than the Fermi temperature

of 1.79 K. So for the helium-3 to behave like a Fermi gas, the

temperature much be much smaller than this value.
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Example 3

Assuming that liquid helium-3 is a Fermi gas, show that the

entropy of liquid helium-3 is given by

S = C3

where C3 is the heat capacity. Show that the enthalpy change

is given by

∆H = T (CD − CC)

where CD and CC are the heat capacities in the dilute phase

and the concentrated phase respectively.
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The Fermi gas heat capacity is given by

C3 =
π2

2

T

TF
R.

The entropy is

S =
∫
dQ

T
=
∫
C3dT

T
.

Substituting, we get

S =
∫
π2

2

1

TF
RdT =

π2

2

T

TF
R

which is the same as C3.
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At phase equilibrium, the condition is

HC − TSC = HD − TSD
so the enthalpy change is

∆H = HD −HC = T (SD − SC).

Since the entropy is equal to the heat capacity, we have

∆H = T (CD − CC).
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Example 4

The heat capacity of a Fermi gas is given by

C =
π2

2

T

TF
R.

Assuming that a mixture of helium-3 in liquid helium-4 behaves

as a Fermi gas, show that

C ∝
r

x2/3

where r is the effective mass ratio, and x is the fractional

concentration in the dilute phase.
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The heat capacity is inversely proportional to the Fermi

temperature, as we can see from its formula:

C =
π2

2

T

TF
R.

The Fermi temperature TF is directly related to the Fermi

energy EF , which is

EF =
~2

2m

(
3π2N

V

)2/3

.

This is in turn inversely proportional to the mass m. It is also

proportional to (N/V )2/3, where N/V is the molar

concentration.

We are given that r is the effective mass ratio, and x is the

fractional concentration. So

EF ∝
x2/3

r
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We have found that

EF ∝
x2/3

r

Therefore, since the heat capacity C is inversely proportional to

the Fermi temperature TF , we have

C ∝
r

x2/3
.

Remark: This tells us the heat capacity of helium-3 is higher

when the concentration is lower, and that it is proprotional to

the effective mass.
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Example 5

The effective mass ratio of pure helium-3 increases from about

2.8 at saturated vapour pressure to about 4.6 at 20 bar. In the

same pressure range, the effective mass ratio for a saturated

mixture increases from about 2.4 to 2.8. How would the

numerical value for the cooling power of a dilution refrigerator

given by

Q̇ = 84ṅ3T
2

change if this refrigerator were operated at 20 bar.

[You are given that the heat capacity of helium-3 is related to

the effective mass ratio r, and the fractional concentration x, by

C ∝
r

x2/3
.

]
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The cooling power is proportional to both the enthalpy change
∆H and the flow rate ṅ3:

Q̇ ∝ x∆H.

The enthalpy change in turn depend on the entropies of the
concentrated (C) and the dilute (D) phases:

∆H = T (SD − SC).

From the previous exercise, we know that the entropy is equal
to the heat capacity for the Fermi gas, so that

∆H = T (CD − CC).

We are given that

C ∝
r

x2/3
.

Let the constant of proportion be C1. Then the enthalpy may
be written as

∆H = TC1

 rD

x
2/3
D

−
rC

x
2/3
C

 .
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In this equation, we have continued to use the subscript D to
denote dilute phase and C for concentrated phase.

We are given that at saturated vapour pressure, the effective
mass ratios are

rC = 2.8, and rD = 2.4.

In the concentrated phase, the concentration is nearly 100̂. In
the dilute phase has a limiting concentration of 6.6%. So

xC = 1, and xD = 0.066.

Substituting these into the above equation for ∆H, we find

∆H = 11.9TC1.

We are given that at the pressure of 20 bar, the effective mass
ratios change to

rC = 4.6, and rD = 2.8.

Substituting these into the above equation for ∆H, we find

∆H = 12.5TC1.
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So the enthalpy change ∆H increases by about 5%.

Since the cooling power is proportional to the enthalpy change

∆H:

Q̇ ∝ x∆H,

it would also increase by 5%.

Remark:

1. This shows that the cooling power may be increased by

increasing the pressure.

2. We have assumed that the limiting concentration in the

dilute phase remains the same. In fact it would increase. This

increases the flow rate and gives a greater increase in the

cooling power.
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