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Learning Aims: You will learn to

State the formula for energy levels in a spin 1/2 paramagnetic

salt.

Sketch and explain the temperature graphs for energy, heat

capacity and entropy of the spin 1/2 salt.

State the distribution of spin 1/2 ions among these levels.

Derive the formula for total energy.

Use the entropy graph to explain magnetic cooling.

Explain how to find the heat of magnetisation, the cooling

power, and the final cooling temperature.

Explain what limits the lowest temperature that can be

achieved. Explain how nuclear cooling overcomes this problem.
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Paramagnetic salts
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Paramagnetic salts.

Heat capacities tend to increase with temperature, as we have
seen for electrons in metals and phonons in solids. A
paramagnetic salt, however, has a heat capacity that goes up
to a peak, comes down, then goes up again.

J.W. Stout, W.B. Hadley, J. Chem. Phys. 40, 55 (1964)

This unusual peak is called the Schottky anomaly.
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Schottky anomaly

The Schottky anomaly happens for paramagnetic materials in a

magnetic field. At very low temperatures, there is little

contribution from electrons and phonons (lattice vibration).

Consider a material with ions that have spin 1/2. This is called

a spin 1/2 paragmagnet. When a magnetic field B is applied,

the energy level of each ion split into two.

The energy levels are

ε = −µ.B = −µBB or + µBB
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Lets see if we can “deduce” the Schottky anomally. At 0 K, all

electrons are at the ground state, so the total energy U is

−NµBB, where N is the number of the ions.

At high temperatures, the thermal energy the electrons is much

larger than the difference between the two magnetic energy

levels. Then the electrons are equally likely to be in −µBB or

+µBB, so U is zero

A sketch of U against T would look like this.
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Heat capacity

In principle, we can now find the heat capacity C using

C =
dU

dT
.

However, the gradient of U neat 0 K is not known.

According to one form of the Third Law of Thermodynamics:

”The entropy of a system approaches a constant value as the

temperature approaches zero.”

This means that change in entropy dS approaches zero. Since

dS =
dQ

T
,

so

C =
dU

dT
=
dQ

dT
= T

dS

dT
→ 0.
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Now that we know the gradient is zero at both 0 K and high T

we can sketch the heat capacity, which is the gradient of U .

We have just deduced the Schottky anomaly.
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The energy can be obtained quantitatively using the Boltzmann

distribution of the number of spin 1/2 ions in the energy levels

1 and 2:

n1 = A exp

(
+
µBB

kBT

)
and n2 = A exp

(
−
µBB

kBT

)
.

Using the total number

N = n1 + n2,

we can solve for A and find the total energy

U = n1(−µBB) + n2(µBB).

The answer is

U = −NµBB tanh

(
+
µBB

kBT

)

8



The entropy.

Next, we shall deduce qualitatively the graph for the entropy. It

looks like this:

We need to show that at low T, it tends to zero. And at high

T, it tends to NkB ln 2.

Recall the formula for entropy: S = kB ln Ω.
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Behaviour of the entropy

At low temperature, most atoms would be in the ground state.

There is only 1 way to arrange this. So the entropy would tend

to S = kB ln 1 = 0.

At high temperature, the difference between the energy levels

would be small compared with the kBT in exp(−ε/kBT ).

The atom is equally likely to be in either level. There are 2

possible arrangements for each of the N atoms - 2N in total.

So the entropy would tend to S = kB ln 2N = NkB ln 2.
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The Principle of Magnetic Cooling
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The Principle of Magnetic Cooling

Magnetic cooling can ultimately reach a temperature of

microKelvins.

To understand the principles, we start with the paramagnetic

salt, which can go down to milliKelvins. This salt contains ions

with magnetic moments coming from their electrons.

At milliKelvin temperatures, the magnetic disorder entropy

(about 1 J/mol) is large compared to all other entropies, such

as lattice and conduction electron entropies, which may be

neglected.

We have seen the properties of a paramagnetic salt. The

entropy is a function of the magnetic field applied. We shall

look at this and see how it can help us understand magnetic

cooling.
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The Principle of Magnetic Cooling

This graph show the entropy against temperature for a
commonly used paramagnetic salt.

D.S. Betts: An Introduction to Millikelvin Technology (Cambridge University Press,

Cambridge 1989)

We start by familiarising ourselves with the various features of
the graph.
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The Principle of Magnetic Cooling

The symbol B is the magnetic field. We start with the graph

for zero or low magnetic field.
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The Principle of Magnetic Cooling

At high temperature, the entropy approaches a constant

because it becomes equally likely to be at any of the magnetic

energy levels.
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The Principle of Magnetic Cooling

At low temperature, the entropy goes to zero because all

particles fall to the lowest level.
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The Principle of Magnetic Cooling

Next, suppose the magnetic field is increased, say from 0 T to

0.1 T. The spacing between energy level would increase.

Then it becomes more likely for a particle to be at the lower

level. So the entropy would fall.
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The Principle of Magnetic Cooling

Point A: To understand how to use the magnetic property for

cooling, suppose we start with a temperature at point A, and

with a low magnetic field..

The salt is placed in contact with a precooling bath. This can

either be a helium bath, or a dilution refrigerator.
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The Principle of Magnetic Cooling

Point B: A magnetic field is then applied. This is done
isothermally. The entropy falls to point B at constant
temperature.

This process performs magnetic ”work” on the salt, which is
converted to heat (like compressing a gas). This heat would be
absorbed by the precooling bath.
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The Principle of Magnetic Cooling

The salt is then thermally isolated from the precooling bath

(e.g. by using a heat switch).

Point C: Demagnetisation now takes place adiabatically (so

entropy is constant). The magnetic field is reduced to a very

small value. The temperature falls to C.
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How does it work?

We have seen how the cooling takes place using

thermodynamics. Let us now see how this takes place

physically.

The ions in the salt have magnetic dipole moments. Normally,

half of the dipoles are spin up, and the other half are spin down.

If a strong magnetic field is applied, the energy levels will split

into two.

Dipoles in the direction of the field will have lower energy, and

dipoles in the opposite direction higher energy.
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Precooling

Remember that a helium bath or a dilution refrigerator is

cooling the salt at the same time.

This would remove energy from the higher energy atoms, so

that they fall into the lower energy state.

This is the ”precooling.”

22



An adiabatic, constant entropy change.

Then, using a heat switch, the salt can be thermally

disconnected from the precooling bath.

The magnetic field is now slowly reduced.

The lower energy level, which contains most of the atoms, is

then forced to increase in energy.

This energy has to come from the surrounding. So the salt

cools down.
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The Principle of Magnetic Cooling

Point C: After some time, the salt would warm up because of

heat leak from the surroundings, since the insulation is not

perfect. The temperture returns to point A along the curve

from C.

The temperature cannot be maintained, unlike the dilution

refrigerator. This is called a ”one-shot” technique.
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Thermodynamics of Magnetic Cooling
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Thermodynamics of Magnetic Cooling

With the help of the entropy graph, we can calculate the heat

Q and temperature T in magnetic cooling.

We can divide the cycle into the following stages:

1. Isothermal magnetisation: We shall find the heat given out

by the salt.

2. Adiabatic demagnetisation: We shall find the lowest

temperature reached.

3. Warming up: We shall determine the cooling power.
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Thermodynamics of Magnetic Cooling

Isothermal magnetisation takes place from A to B on the graph
at the start. Since dQ = TdS, the heat given out is

Q =
∫ A
B
TdS.

This is just the area of the rectangle ABDE.

The heat released is usually a few J/mol of the refrigerant (the
salt), so it can easily be absorbed by an evaporating helium
bath or a dilution refrigerator.
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Thermodynamics of Magnetic Cooling

Adiabatic demagnetisation takes place from B to C on the
graph.

Later on, we shall derive the formula for magnetic entropy. In
that formula, we shall see that the entropy is a function of B/T .

For now, a quick way to understand this is to look at the
Boltzmann distribution, exp(−µBB/kBT ). This is indeed a
function of B/T .
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Thermodynamics of Magnetic Cooling

Since the entropy should depend on exp(−µBB/kBT ), we would

expect the entropy to be a function of B/T as well.

This gives us a quick way to find the coldest temperature

reached in this demagnetisation step.

From the graph, we see that the entropy is a simple function of

T and B. If T increases, entropy increases. If B increases,

entropy decreases.

In the adiabatic process, the entropy is a constant. Since it is a

function of B/T , then B/T must also be constant. This is just

the equation we need:

B

T
= constant
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Thermodynamics of Magnetic Cooling

Point B: Suppose we start at temperature Ti and field Bi. If
this is point B on the graph, then Bi = 0.1T and Ti = 100mK

Point F: We then reduce the field to a smaller value Bf . Let Tf
be the new temperature.

The equation B/T = constant means that

Bf

Tf
=
Bi
Ti
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Thermodynamics of Magnetic Cooling

The new temperature is

Tf =
Ti
Bi
Bf

Clearly, we can make Tf very small by reducing the magnetic

field Bf to a very small value.

But what if we reduce the magnetic field Bf to zero? Surely

the temperature Tf would not go to zero. Something must

happen to limit the lowest temperature that we can reach.

Indeed, this is the case. When the temperature is sufficiently

low, the effects of the magnetic fields from neighbouring ions

of the salt become important.
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Interacting Magnetic Dipoles
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Thermodynamics of Magnetic Cooling

When the temperature is sufficiently low, the mutual

interaction would tend to align all magnetic dipoles in the same

direction. When this happens, the entropy falls to zero, and the

magnetic cooling would stop.

So the mutual interaction limits the lowest temperature that

can be achieved using this method. At very low temperatures,

the equation would have to be modified to take into account

this mutual interaction. We shall come back to this.
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Thermodynamics of Magnetic Cooling

Point C: We can now see that the graph is misleading. We do

not actually demagnetise to a field at point C, which is zero.

Rather, we would demagnetise to a very small field, close to C.

To make things simple, we shall still refer to C for the end

point of the demagnetisation. Then warming up starts.
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Thermodynamics of Magnetic Cooling

Remember that the salt is thermally isolated during the
demagnetisation. After reaching the lowest temperature at C,
the salt remains isolated. We hope that it would stay cold for
as long as possible.

But because insulation is not perfect, the salt starts warming
up slowly. Since the magnetic field B is fixed, the temperature
and entropy would follow the curve and eventually reach the
starting temperature at A.
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Thermodynamics of Magnetic Cooling

As it warms up, the heat absorbed by the salt can be obtained

from the entropy using the same formula as before

Q =
∫ A
C
TdS

We need to integrate along the curve from C to A. So the heat

absorbed is given by the shaded region on the graph.
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Thermodynamics of Magnetic Cooling

The heat absorbed in warming up also gives the cooling power.

If the salt can absorb more of the heat that leaks in through

the insulation, then it would be able to remain cold for a longer

period of time.

Note that this is a different definition from before. For the

dilution refrigerator, the cooling power Q̇ is the rate at which

heat is absorbed.

The cooling power Q for the magnetic refrigerator is the

total heat absorbed.
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Interaction between magnetic dipoles

We have seen that the interaction between magnetic dipoles of
the ions in the salt sets a lower limit to the temperature that
can be reached by demagnetisation.

This also means that the formula for the lowest temperature

Tf =
Ti
Bi
Bf

would not be accurate at very low temperatures. It can be
modified to the following form:

Tf =
Ti
Bi

√
B2
f + b2
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Interaction between magnetic dipoles

Lets try and understand this formula physically.

Tf =
Ti
Bi

√
B2
f + b2

We see that when Bf is reduced to zero,

Tf =
Ti
Bi
b.

If we compare this with the original form of

Tf =
Ti
Bi
Bf

we see that b corresponds to Bf . This makes sense if we think

of b as the field that remains after the applied magnetic field

has been reduced to zero.
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Interaction between magnetic dipoles

When the applied magnetic field is reduced to zero, there is

indeed a remaining field. That would be the resultant field

from the neighbouring magnetic dipoles.

We are looking at a temperature Tc at which the effect of this

interaction becomes important. This means that kBTc is

comparable to the interaction energy

εd = µb.

Tc is called the ordering temperature. It is the temperature

below which the neighbouring fields become strong enough to

align the dipoles. We may define

kBTc = µb.
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Magnetic Refrigerators
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Magnetic Refrigerators

The performance of a magnetic refrigerator is mainly

determined by:

- the starting magnetic field and temperature,

- the heat leaks, and

- the paramagnetic salt that is used.

Typical starting conditions are 0.1 to 1 T and 0.1 to 1 K.

These are fairly easy to achieve nowadays.

There a few properties of a paramagnetic salt that are

desirable:

- low ordering temperature to reach low temperatures,

- large specific heat to absorb more heat before warming up
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Magnetic Refrigerators

The following are paramagnetic salts that have been used:

The last one, CMN, has the lowest ordering temperature. This

means it can potentially reach the lowest temperature before

the interaction between magnetic dipoles become important.

CMN has been used extensively and could reach 2 mK.
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Magnetic Refrigerators

The follow graphs show the entropies of the actual salts.

Pobell, Matter and methods at low temperatures (2007)
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Magnetic Refrigerators

For example, look at the 2 graphs for the salt CMN:

The one to the left is for zero magnetic field.

The one to the right is for 2 T.

They look very similar to the entropy graphs that are shown

earlier.
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Magnetic Refrigerators

These are examples of actual magnetic refrigerators that have
been built.

Pobell, Matter and methods at low temperatures (2007)

Notice the heat switch near the top. They are usually
connected to a dilution refrigerator. The paramagnetic salt
refrigerant is in the middle.
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Magnetic Refrigerators

Magnetic refrigerators using paramagnetic salts are now largely

replaced by the dilution refrigerator, which can reach the same

temperatures.

However, they are still useful for small experiments and

satellites, where compact refrigerators are required. Examples

are in detectors for millimetre wave, X rays and dark matter.
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Nuclear Refrigeration
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Nuclear Refrigeration

We have so far looked at the use of the electronic magnetic

dipoles for cooling. This is limited to milliKelvin temperatures

by the interaction between the electronic dipoles.

It is possible to reach much lower temperatures if we use the

nuclear magnetic dipoles. The magnetic dipole moment of the

nucleus is much smaller than that of the electron. As a result,

the interaction between nuclear dipoles is much weaker.
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Nuclear Refrigeration

To get some idea of the relative magnitudes, we look at the
unit for electronic dipole moment (Bohr magneton) and the
unit for nuclear dipole moment (nuclear magneton):

Bohr magneton, µB = 9.27× 10−24 J/T
Nuclear magneton, µn = 5.05× 10−27 J/T

The nuclear magneton is nearly 2000 times smaller. This gives
us an idea of how much smaller the nuclear magnetic moment
is.

If we use the nuclear magnetic dipole for cooling, we can reach
microKelvin temperatures because of the much smaller
interaction field. The ordering temperature for the nuclear
dipole can be as small as 0.1 µK.

For nuclear cooling, we can use metal as the refrigerant instead
of paramagnetic salts. Metal has the advantage of high thermal
conductivity.
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Nuclear Refrigeration

Although the small nuclear moment offers the potential of

reaching much lower temperatures, it also requires much more

demanding conditions. The very small moment means that we

need very high starting magnetic fields, and very low starting

temperatures.

As an example, we look at copper. Copper is a ”work horse” of

nuclear refrigeration. For copper, we would typically need a

starting field of Bi = 8 T, and a starting temperature of

Ti = 10 mK. This is just to reduce the entropy by 9%.

From the earlier explanation on the principle of magnetic

cooling, we know that an lower entropy means that a lower

temperature can be reached during demagnetisation. It also

means a higher cooling power, since more heat can be

absorbed during warming up.
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Nuclear Refrigeration

From the entropy graph, we can see that to reduce the entropy

further, even higher fields and lower temperatures would be

required.

The 8 T field already requires superconducting magnets, and

the 10 mK temperature would require a dilution refrigerator.
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Nuclear Refrigeration

Why would a small magnetic moment require higher starting

field and lower starting temperature? Lets try and understand

this physically.

Consider the magnetic energy levels of copper. Applying a

magnetic field increases the spacing between levels. Because of

the small nuclear moment, the spacing would be small even for

a high starting field.

Pobell, Matter and methods at low temperatures (2007)
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Nuclear Refrigeration

Because the spacing is small, we would get more particles at

the higher energy level according to the Boltzmann

distribution. This means higher entropy. In order to reduce

this, we need a lower starting temperature.

Pobell, Matter and methods at low temperatures (2007)

This is difficult. For copper, even at a starting temperature of

10 mK, there is still a substantial fraction of the nuclei at the

higher levels. The levels are just too close together because of

the small nuclear moment.
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Nuclear Refrigeration

Fortunately, because the nuclear moment is small, the

interaction field is also small. This means that in the

demagnetisation step, it is possible to reduce the temperature

to a very small value.

In the case of the copper example, if we reduce the field by

1000 times to 8 mT, the temperature also falls by 1000 times

to 6 µK.
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Nuclear Refrigeration

One disadvantage of very low temperatures in magnetic cooling

is that the cooling power becomes very small. The cooling

power is given by the shaded region in the graph.

The horizontal axis is temperature. So for low temperatures,

the horizontal size of the shaded area would also be small.

Since nuclear cooling is 1000 times colder than electronic

magnetic cooling, the cooling power is also 1000 times smaller.
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Nuclear Refrigeration

This is a schematic diagram of a nuclear refrigerator. Notice

how the main components are connected together.

The refrigerant is a copper block at the centre.

Pobell, Matter and methods at low temperatures (2007)
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Learning Aims: You should be able to

State the formula for energy levels in a spin 1/2 paramagnetic

salt.

Sketch and explain the temperature graphs for energy, heat

capacity and entropy of the spin 1/2 salt.

State the distribution of spin 1/2 ions among these levels.

Derive the formula for total energy.

Use the entropy graph to explain magnetic cooling.

Explain how to find the heat of magnetisation, the cooling

power, and the final cooling temperature.

Explain what limits the lowest temperature that can be

achieved. Explain how nuclear cooling overcomes this problem.
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Worked Examples
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Example 1

There is one mole of a spin 1/2 salt in a magnetic field of 2 T.

(i) Write down the formulae for the magnetic energy levels.

Calculate them.

(ii) Write down the formula for the distribution of number of

spin 1/2 ions in each level. Find the high temperature limit of

each formula.

(iii) Hence find the population in each energy level in the high

temperature limit.
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Solution

(i) Formulae for the magnetic energy levels are

ε1 = −µBB, ε2 = µBB.

Substituting B = 2 T, we get

ε1 = −1.854× 10−23 J, ε2 = 1.854× 10−23 J.

(ii) The particles follow Boltzmann distribution:

n1 = A exp

(
µBB

kBT

)
, n2 = A exp

(
−
µBB

kBT

)
.

At high temperatures, T is large and the arguments ε1/kBT and

ε2/kBT both tend to zero.

So the high temperature limits are:

n1 = A, n2 = A.
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(iii) The total population of spin 1/2 ions is 1 mole.

Since the populations are equal in both levels, the population

of spin 1/2 ions in each level is 0.5 mole.
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Example 2

There is one mole of a spin 1/2 salt in a magnetic field of 2 T.

(i) Write down the formula for the Boltzmann factor. Find the

Boltzmann factor at each energy level when temperature is 0.5

K.

(ii) Find the ratio of the population at the higher energy level

to the population at the lower energy level.

(iii) Find the population at each energy level in moles.
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Solution

(i) The Boltzmann factors at levels 1 and 2 are :

exp

(
µBB

kBT

)
and exp

(
−
µBB

kBT

)
respectively.

Substituting B = 2 T and T = 0.5 K, we find

exp

(
µBB

kBT

)
= 14.69 and exp

(
−
µBB

kBT

)
= 0.06809.

(ii) The populations are

n1 = A exp

(
µBB

kBT

)
, n2 = A exp

(
−
µBB

kBT

)
.

The ratio is

n1 : n2 = exp

(
µBB

kBT

)
: exp

(
−
µBB

kBT

)
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is the ratio of the Boltzmann factors.

So the answer is n1 : n2 = 14.69 : 0.06809.

(iii) The total population of spin 1/2 ions is 1 mole.

This is distributed between the two energy levels in the ratio

14.69 : 0.06809.

So the population in level 1 is

n1 =
14.69

14.69 + 0.06809
× 1 = 0.9954

and the population in level 2 is

n2 =
0.06809

14.69 + 0.06809
× 1 = 0.004615
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Example 3

There is one mole of a spin 1/2 salt in a magnetic field of 2 T.

At first, the salt is at a high temperature where the populations

of spin 1/2 ions at each energy level are approximately equal.

(i) When temperature is lowered to 0.5 K, how much of the

population falls from higher to lower energy level? (Use results

from Example 2.)

(ii) When this happens, how much heat is given out? (Use

results from Example 1.)
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Solution

(i) The total population is 1 mole. So at the high temperature,

there is 0.5 mole at each level:

n1 = 0.5, n2 = 0.5.

From Example 2, there are at 0.5 K the following:

n1 = 0.9954, n2 = 0.004615.

So the amount that falls from higher to lower level is:

(n2 at high temperature) - (n2 at 0.5 K) = 0.5 - 0.004615 =

0.4954 mole

(ii) From Example 1, the energies of each level are

ε1 = −1.854× 10−23 J, ε2 = 1.854× 10−23 J.
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When a particle falls from higher to lower level, the heat it

gives out is ε2 − ε1.

0.4954 mole of spin 1/2 ions fall from higher to lower level.

This number of spin 1/2 ions is 0.4954 NA.

So the total heat given out is:

0.4954NA × (ε2 − ε1) = 11.06 J.
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Example 4

This question follows from Example 3. The salt is now isolated

thermally, so that no heat can go out or come in.

(i) Write down the formula for the final temperature in

adiabatic demagnetisation, explaining all symbols used. The

magnetic field is then lowered from 2 T to 0.2 T. Find the new

temperature of the salt.

After some time, the temperature slowly increases because

heat leaks in.

(ii) The spin 1/2 ions move from lower to higher level until

populations are approximately equal again. Find the heat

absorbed.
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Example 4

(i) Formula for the final temperature in adiabatic

demagnetisation is

Tf =
Bf

Bi
Ti,

where Ti is initial temperature, Tf is final temperature, Bi is

initial magnetic field and Bf is final magnetic field.

From Example 3, Ti = 0.5 K, Bi = 2 T.

Given Bf = 0.2 T. Substituting, we find

Tf =
0.2

2
× 0.5 = 0.05 K.

(ii) We know from Example 3 that 0.4954 mole of particles has

fallen from higher to lower energy.
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When the salt warms up, the same amount would move back
to higher level. However, the energy spacing between levels is
now smaller, because the field has decreased.

The energy spacing is

ε2 − ε1 = µBB − (−µBB) = 2µBB.

This spacing is proportional to B.

The field has decreased from 2 T to 0.2 T. This is 10 times
smaller.

This means that the energy spacing is also 10 times smaller.
Therefore, when the particles move back to higher level, the
energy gain would also be 10 times smaller.

From Example 3, the heat given out was 11.06 J. The energy
gain now would be 10 times smaller than this.

So the answer is 11.06/10 = 1.106 J.
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