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Learning Aims: You will learn to

Sketch and describe the phase diagram of liquid helium-4.

Derive the dispersion relations for a phonon and a real particle

in empty space.

State the formula for Landau critical velocity. Describe what it

means and the conditions where it is valid.

Describe Landau’s dispersion relation for liquid helium. Explain

the evidence from heat capacity measurement.

Describe London’s explanation for superfluidity.

State the formula for Bose-Einstein distribution. Explain how

chemical potential changes with temperature for bosons.
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Learning Aims: You will learn to

Explain how Bose-Einstein distribution is used to understand

Bose-Einstein condensation. Derive the formulae for number of

excited bosons and condensation temperature.

Sketch and explain the graph of boson numbers against

temperature.

Sketch and explain the graph for heat capacity of helium gas

around the condensation temperature.
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Superfluid helium
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Superfluid helium.

When helium-4 is cooled below 2.17 K, it becomes superfluid.

This is a phase of matter that is different from any liquid at

room temperature - it has no viscosity at all.

When a stone is dropped in water, it experiences resistance to

its movement because of viscosity. When the same stone is

dropped in superfluid helium-4, it experiences no resistance at

all.

In order to understand these behaviours, we study the following:

1. what zero resistance means for excitations (e.g. phonons),

2. what the heat capacity can say about excitations,

3. how a wavefunction may have zero resistance, and

4. the idea of a macroscopic (giant) wavefunction.
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Liquid helium-4

When temperature falls, we expect matter to change from gas
to liquid to solid. Helium-4, however, remains a liquid right
down to 0 K.

The phase diagram shows that helium can only become a solid
if the pressure is higher than 25 atm.

http://ltl.tkk.fi/wiki/LT/%C2%B5KI_Group/Helium_Crystals
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Superfluid ideas.

One simple way to start to understand superfluid is to think

about excitations.

The exctitation here refers to exciting the fluid, or particles in

the fluid, to a higher energy state. Imagine a large body moving

through a liquid. It collides with the particles in the fluid.

If the collision is too weak, it may not cause any excitation,

since energy levels occur in discrete steps (i.e. they are

quantised).

This suggests that there must be a velocity of the body below

which there would be no excitation.

No excitation means no viscosity. Why?

If there is resistance, the body must give up some energy. By

energy conservation, this can only go to create excitations.
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Landau critical velocity
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Dispersion relation.

To develop the excitation idea further, we use the dispersion

relation. This is the relation between energy and momentum of

a particle.

For example, the dispersion relation for a particle of mass m in

free space with energy E and momentum p is

E =
p2

2m
.

This comes from the more familiar kinetic energy formula

E =
1

2
mv2

when we replace v by p/m.

The dispersion relation is a kind of constraint on the possible

values of E and p.
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Dispersion relation.

Or, if the particle is a phonon, then the relation is

E = pc,

where c here is the speed of sound.

This comes from the more familiar relations

v = fλ, E = hf and p = h/λ.

The dispersion relation is again a constraint on the possible

values of E and p.

To produce a phonon with momentum p, we must have an

energy of exactly E = pc. If we have more or less than E, a

phonon with a different p is produced.

We think of the phonon as an elementary excitation.
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The Landau critical velocity.

Return to the idea of a large body moving through a superfluid.

We can derive an expression for the velocity that would

produce an elementary excitation.

Consider a large body of mass M moving at velocity v.
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The Landau critical velocity.

Suppose it moves fast enough to produce an elementary

excitation (e.g. phonon) of energy E.

After that, it’s velocity changes to v′.
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The Landau critical velocity.

By energy conservation,

1

2
Mv2 =

1

2
Mv′2 + E.

Suppose that the momentum of the excitation is p. By

momentum conservation,

Mv = Mv′+ p.
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The Landau critical velocity.

Rewrite the equations to give:

(v + v′)(v − v′) =
2E

M

and

v − v′ =
p

M
.

From these, we can get

2v(v − v′) ≈
2E

M

and

|v − v′| =
p

M
,

where we have used v′ ≈ v because the mass of the body is

much larger than that of the excitation particle.
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The Landau critical velocity.

From this vector diagram

v

v′

v − v′

we can see that

|v − v′| ≥ v − v′,

because v − v′ is nearly zero, since v′ ≈ v.
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The Landau critical velocity.

Rewriting the equations in this form,

(v − v′) ≈
E

vM

and

|v − v′| =
p

M
,

and substituting into

|v − v′| ≥ v − v′,

we find
p

M
≥

E

vM
,

or

v ≥
E

p
.

So v must be larger than E/p in order to produce any

excitation.
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The Landau critical velocity.

Recall that E and p must be related by the dispersion relation.

Suppose the minimum value of E/p is not zero. Let this be

vL =

(
E

p

)
min

.

We have shown that v must be more than this in order to

produce any excitation.

So if the body moves at a velocity below vL, it would not

produce any excitation. This means it would not experience

any viscosity - i.e. the fluid is a superfluid.

vL is called the Landau critical velocity.
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The Landau critical velocity.

Assume that the body loses only a very small fraction of its

kinetic energy to the excitation energy. We have shown that

v ≥
E

p
.

In words, the ratio of the excitation energy to its momentum

cannot be bigger than the velocity of the body.

So v of the body must be larger than E/p of the excitation in

order to produce any excitation at all.

Recall that the excitation would obey a dispersion relation. E.g.

for a phonon, E = pc, so the ratio os E/p = c, a fixed number.

For other types of excitation, this could be a range of numbers.
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The Landau critical velocity.

Suppose the range of possible E/p has a certain minimum

value. Let this be

vL =

(
E

p

)
min

.

So v of the body must at least be more than this. If not, then v

would be smaller than the smallest E/p. This means v is smaller

than all possible E/p. If so, it cannot produce any excitation.

Therefore, if the body moves at a velocity below vL, it cannot

produce any excitation. This means it would not experience

any viscosity, because it cannot lose any energy. Then the fluid

is a superfluid.

vL is called the Landau critical velocity.
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Superfluid dispersion relation

Therefore, if the smallest E/p in a fluid is not zero, then

superfluidity is possible. This is because if the body moves at a

velocity below (E/p)min, it experiences no viscosity.

Conversely, if the smallest E/p in a fluid is zero, then it is not a

superfluid. This is because as soon as the body moves, it

creates excitation and loses energy. As a result, it experiences

viscosity.

Let us now look at the typical dispersion relations in matter

and what all these mean.

Consider the following two ways in which the moving body can

produce excitations:

1. deflecting a helium atom, or

2. creating a phonon (particle of wave motion).
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Deflecting an atom

The dispersion relation for an atom is

E =
p2

2m
.

So
E

p
=

p

2m
.

This depends of momentum p of the atom. So E/p could have

a range of values. Since p can take any value from 0 upwards,

so the range of possible E/p is also any value from 0 upwards.

Therefore, the smallest E/p is zero - when p = 0.

Therefore, the Landau critical velocity vL = 0.

This means that there can be no superfluid in an ideal gas,

which is made up of such free particles.
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Creating a phonon.

The dispersion relation for a phonon is

E = pc.

So
E

p
= c.

This means that E/p is constant. There is only one possible for
E/p, so the smallest E/p is also c.

Therefore, the Landau critical velocity vL = c.

This means that the fluid would be superfluid, as long as the
body does not move faster than the speed of sound.

As long as the body moves slower than the speed of sound, it
cannot lose energy to excite any phonon. So it would not
experience any viscosity.

To see how this can help explain why helium-4 is a superfluid,
lets pursue the phonon idea further.
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It is possible to verify that phonons are indeed the main

contribution to heat capacity of liquid helium-4 at low

temperature T. This was measured by D. S. Greywall in 1978.

This picture is a sketch of his results.

The measured heat capacity varies as T3 below 1 K. This is

consistent with the phonon contribution.
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Landau’s dispersion relation.

Above 1 K, the heat capacity increases faster than T3 - notice

that the slope gets steeper.

In 1947, Landau, a Russian physicist, suggested that this is due

to a new type of excitation that is different from phonon. He

thought it has something to do with rotation of the liquid, so

he called it “roton”.
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Landau critical velocity.

Landau suggested that, above 1 K, the change in heat capacity

from T3 was due to an excitation different from phonon.

He assumed that it has a dispersion relation given by the

parabolic curve labelled “roton” in this graph.

By choosing suitable height and width of this parabola, he

could fit the measured heat capacity results.
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Landau critical velocity.

In 1961, Henshaw and Woods measured the dispersion relation

of excitations in liquid helium-4 using neutron scattering. They

confirmed that Landau’s dispersion curve was correct.

Their measurements gave the following quantities:

excitation:
∆

kB
= 8.65 K,

momentum:
p0

~
= 19.1 nm−1.
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Experiment.

The Landau critical velocity is then given approximately by

vL =
∆

p0
= 58 m s−1.

In 1977, Allum setup an experiment to accelerate a ball of ions

through superfluid helium-4. They measured the resistance.

They found that the resistance remained zero until the velocity

of the ball reached 45 m/s. Then the resistance increased

rapidly.

45 m/s and 58 m/s are within the same order of magnitude.

Given the complexity of the system, this is accepted as

reasonable evidence that Landau’s theories are correct.
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London’s explanation of superfluidity
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Explaining superfluidity.

Fritz London suggested using Bose-Einstein condensate (BEC)

to explain superfluidity. This is possible because:

1. Helium-4 is a boson, so it may undergo Bose Einstein

condensation.

2. The liquid would then become a single wavefunction, so it

would show no viscosity unless it flows too quickly.
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In order to test his theory, London calculated the transition

temperature and heat capacity of the BEC (left figure). He

showed that there is some agreement with liquid helium-4

(right figure), at least in trend.

Left: Enss and Hunklinger, Low Temperature Physics, page 8, 2005.

Right: London, Physical Review, volume 54, page 947, 1938
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BEC heat capacity.

We shall look at a simplified version of London’s treatment to

calculate the BEC heat capacity.

This involves finding:

1. the temperature at which condensation starts,

2. the change in number of atoms with temperature, and

3. the heat capacity below condensation temperature.
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Helium-4 is a boson. The energy distribution of bosons is given

by the Bose-Einstein distribution:

n(ε)dε =
g(ε)dε

exp((ε− µ)/kBT )− 1

Using this, we can calculate the temperature at which bosons

condense into BEC.
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The density of states

We have seen a number of different density of states.

For electrons, we need to multiply by 2 because of the spin

states. For phonons, we multiply by 3 for the three possible

polarisations. For photons, we multiply by 2 for the two

polarisation states.

So what do we do for atoms that are bosons?

The answer is: we use the same density of state for the ideal

gas:

g(ε) =
4mπV

h3
(2mε)1/2

This is the very first one that we have seen, before we have to

include the additional effects of spin and polarisation.
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The chemical potential

µ is called the chemical potential. It is determined by the total

number of particles. We get this by integrating:

N =
∫ ∞

0

g(ε)dε

exp((ε− µ)/kBT )− 1

I have assumed that the ground state energy is zero, which is

why I integrated from zero.

This is not easy to solve. Instead, we shall make use of some

approximations at low temperature.

For a start, note that µ could depend on temperature, since

the above equation contains T .
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The chemical potential

f(ε) =
1

exp((ε− µ)/kBT )− 1

If µ is positive, f(ε) is negative for some energies. Then some

states have a negative number of particles, which is not

possible.
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The chemical potential

So µ must be negative.

The graph to the right of 0 contributes to the total particle

number N .
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The chemical potential

If temperature falls, f(ε) = 1
exp((ε−µ)/kBT )−1 decreases.

Then particle number decreases, which is not possible.
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The chemical potential

The particle number can remain fixed if µ moves closer to 0:

Then f(ε) increases and particle number can remain the same.
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The occupation number

We focus on the occupation number in the integral:

f(ε) =
1

exp((ε− µ)/kBT )− 1

First, note that µ cannot be positive, or else for small energy

the exponential function would be less than one. Then the

denominator would be negative. This means negative

occupation number, which is not physical.

Next, we know that when temperature is low enough, a large

number of atoms would go into the ground state ε = 0. The

number would be as large as N, which is of the order of 1 mole

(≈ 1024).

This means that f(0) would be very large, so that µ must be

very close to zero. Then the exponential function would be

close to 1 and the denominator would be close to zero.
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Number of atoms in the excited state

So at very low temperature, it is safe to assume that µ = 0.

We can then write

Nex =
∫ ∞

0

g(ε)dε

exp(ε/kBT )− 1

I have added a subscript ex to N . The reason will become clear

in a moment. First, integrate this with the help of the Table of

Integrals:

Nex =
(

2πmkBT

h2

)3/2
2.612V

Notice that T is in the denominator. This suggests that the

total number of atoms decreases with temperature - that they

are disappearing !

In fact, the above integral includes only atoms above the

ground state ε = 0. The ”missing” atoms are going into the

ground state.
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The condensation temperature

The formula for Nex is only able to compute the number of

particles above the ground state. This is because the density of

states g(ε) in the integral is zero when ε = 0.

When a substantial fraction of the particles start going into the

ground state, this has to be added separately. So Nex is the

number of atoms in the excited states. Hence the subscript ex.

We know that as soon as Nex becomes less than the original

number N , then (N −Nex) atoms start going into the ground

state.

Therefore, condensation takes place when Nex = N .

Substituting this and solving for T , we get

TBE =
h2

2πmkB

(
N

2.612V

)2/3
.
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Transition temperature

Substituting the mass of helium atom and the molar volume

into the formula for the condensation temperature TBE, we find

3.13 K.

This is fairly close to the lambda point temperature of 2.18 K,

at which liquid helium-4 changes to a superfluid,

and provides some support for the idea that the superfluid is a

BEC.
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Heat capacity.

Next, to calculate the heat capacity, recall the expression for

the number of excited particles:

Nex =
∫ ∞

0

g(ε)dε

exp(ε/kBT )− 1
.

To find the heat capacity, we first find the energy U . The above

integral is a sum over particle number in every energy interval.

To find U , we need to multiply by the energy ε at each interval

dε:

U =
∫ ∞

0

εg(ε)dε

exp(ε/kBT )− 1
.

Integrating using the table of integrals gives

U = 0.7704kBN
T5/2

T
3/2
BE

.
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Below condensation temperature.

The heat capacity below the condensation temperature is then

obtained by differentiating with respect to T :

C = 1.926kBN

(
T

TBE

)3/2

.

Note that the peak value is 1.926kBN . This is obtained by

setting T = TBE, when Nex = N (all atoms are just excited).
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Above condensation temperature.

Above condensation temperature TBE, we cannot use the same

formula for the heat capacity. This is because it is derived

assuming that the chemical potential µ ≈ 0, which is only true

when condensation starts.

Above TBE, µ changes. Albert Einstein has published a formula

for this in 1924 (right half of curve):

At high temperatures, the heat capacity reaches the ideal gas

value of 3NkB/2.
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Condensation
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Condensation Temperature

I have said earlier that at very low temperature, we may set the

chemical potential µ to zero, so that the total number:

N =
∫ ∞

0

g(ε)dε

exp((ε− µ)/kBT )− 1
,

becomes the excited number:

Nex =
∫ ∞

0

g(ε)dε

exp(ε/kBT )− 1
,

I have not actually justfied why it is valid to set µ to zero. We

shall do this now.

Recall the density of states formula

g(ε) =
4mπV

h3
(2mε)1/2
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When µ is set to zero, the integral becomes:∫ ∞
0

g(ε)dε

exp(ε/kBT )− 1
=

4mπV

h3
(2m)1/2

∫ ∞
0

ε1/2dε

exp(ε/kBT )− 1
.

This can be integrated using the result∫ ∞
0

x1/2

ex − 1
dx = 2.315

to give the finite answer∫ ∞
0

g(ε)dε

exp(ε/kBT )− 1
=
(

2πmkBT

h2

)3/2
2.612V

Denote this by Nex and sketch the graph against T .

Since Nex is related to T3/2, it increases from zero and

eventually becomes larger than N .
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To understand what this means, consider the original integral

N =
∫ ∞

0

g(ε)dε

exp((ε− µ)/kBT )− 1
.

µ can be adjusted so that the integral is equal to N . Assuming

that this is the case, a graph of N versus T is just a horizontal

line.
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Compare

Nex =
∫ ∞

0

g(ε)dε

exp(ε/kBT )− 1

and

N =
∫ ∞

0

g(ε)dε

exp((ε− µ)/kBT )− 1
.

They are equal when µ = 0. When they are equal, the two
graphs also meet.

Denote the temperature of the meeting point by TBE.
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Consider a graph of the integral∫ ∞
0

g(ε)dε

exp((ε− µ)/kBT )− 1

against T .

As T falls, µ can be adjusted for the integral to be equal to N .

When T reaches TBE, µ reaches its maximum value of 0.
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Then µ can only stay 0 because it cannot be positive. So the
integral is now equal to Nex. As T falls further, the integral
falls along the Nex curve.

This also means that the integral

N =
∫ ∞

0

g(ε)dε

exp((ε− µ)/kBT )− 1
.

fails for temperature below TBE - it can no longer be equal to
N .
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This is because g(ε) is only an approximate formula.

Recall from the ideal gas lectures that g(ε) is used when there
are many energy levels for each energy interval dε.

At very small T , only a few states near zero energy are
populated, so g(ε) becomes inaccurate. In particular, g(0) = 0
means that the integral

∫
f(ε)g(ε)dε does not include the

ground state (ε = 0) contribution.

This is all right at room temperature where there are very few
particles in the ground state. At very low temperatures when
most of the particles go into the ground state, this is not valid
any more.
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This means that if we want to calculate the total energy or

number of particles, we should really add up the number in

each energy level one by one, like this:

N =
∑

ni.

We cannot integrate using density of states anymore.

The idea of using Nex is a compromise. We still calculate the

number of particles in all energy levels above ground state by

integrating using density of states. But we treat the ground

state separately, and add Nex to the number in the ground

state to get the total:

N = N0 +
∫ ∞

0
f(ε)g(ε)dε,

where N0 is the number of particles in the ground state, and

the integral is number (Nex) in all of the higher states.
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This understanding gives us a way to interpret the decreasing

Nex. It is the number of particles that have not fallen into the

ground state yet - i.e. the number of excited particles. This

means that TBE is the temperature at which particles start

going into the ground state at a macroscopic (very large) scale

- it is the condensation temperature.

The number of excited particles is given by

Nex =
(

2πmkBT

h2

)3/2
2.612V

So at TBE, Nex is equal to N . Substituting and solving, we find

TBE =
h2

2πmkB

(
N

2.612V

)2/3
.
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Learning Outcome: You should be able to

Sketch and describe the phase diagram of liquid helium-4.

Derive the dispersion relations for a phonon and a real particle

in empty space.

State the formula for Landau critical velocity. Describe what it

means and the conditions where it is valid.

Describe Landau’s dispersion relation for liquid helium. Explain

the evidence from heat capacity measurement.

Describe London’s explanation for superfluidity.

State the formula for Bose-Einstein distribution. Explain how

chemical potential changes with temperature for bosons.
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Learning Outcome: You should be able to

Explain how Bose-Einstein distribution is used to understand

Bose-Einstein condensation. Derive the formulae for number of

excited bosons and condensation temperature.

Sketch and explain the graph of boson numbers against

temperature.

Sketch and explain the graph for heat capacity of helium gas

around the condensation temperature.
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Worked Examples
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Example 1

(i) What excitation is present in an ideal gas and why? Write

down the dispersion relation, explaining the symbols used.

(ii) Determine algebraically the critical velocity of a body

moving through an ideal gas.

(iii) Determine the critical velocity graphically. What does the

result mean about the ideal gas?
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Solution

(i) Deflecting of free particles. Because particles in ideal gas do

not interact with each other, and so behave as free particles.

Dispersion relation is

E =
p2

2m
,

where p is momentum and E is energy of each particle.

(ii) Critical velocity is the minimum E/p.

For the above dispersion relation,

E

p
=

p

2m
,

The smallest p is 0. So minimum E/p is zero.

59



Therefore the critical velocity is zero.

(iii) First, sketch a graph of

E =
p2

2m
,

Then draw a straight line from origin to any point on the
curve. The gradient of this line is E/p.
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Move the point along the curve until this gradient is smallest.

In this case, the gradient is smallest when the point appriaches

the origin, where the straight line becomes horizontal.

Therefore the smallest gradient is then zero. So critical velocity

is zero:

If a body does not move, there is no resistance. If it moves with

any velocity, it will create excitations an experience resistance.

This means that the ideal gas is not a superfluid.
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Example 2

(i) Sketch graphically the superfluid helium-4 dispersion

relation. Label and describe the main features.

(ii) Sketch the graph of its heat capacity against temperature

in logarithmic scales for both axes, for temperatures below

superfluid transition.

(iii) Explain the connection between the two graphs.
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Solutions

(i)

At low momentum p, the graph is straight, and only phonon

excitations are possible.

At higher momentum, the graph bends to give a minimum.

This comes from roton excitations
63



(ii)

(iii) At low temperature, heat capacity is proportional to T3.

This is what phonons contribute, and suggests that only

phonons are excited. This corresponds to the lower p region on

the dispersion graph.
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At higher temperature, the heat capacity deviates from T3.

This suggests that there is additional contributions from other

types of excitations. This corresponds to the roton region on

the dispersion graph.
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Example 3

(i) Write down the integral expression for the total number of

bosons in terms of density of states. Explain this integral.

(ii) The chemical potential increases to zero when temperature

decreases to a certain value. What happens to the chemical

potential and the integral expression when the temperature falls

further?

(iii) How do we then interpret the integral expression? Why?
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Solution

(i) The total number of bosons is given by

N =
∫ ∞

0

g(ε)dε

exp((ε− µ)/kBT )− 1

ε is energy of a boson. g(ε) is the density of states.

g(ε)dε is the number of states in energy interval dε

1/(exp((ε− µ)/kBT )− 1) is the average population of a state at
energy ε . When multiplied by g(ε)dε , this gives the average
population in dε.

Integrating then gives the total number of particles.

(ii) If we fix the chemical potential at zero, the resulting
integral falls with temperature. So its value becomes smaller
and smaller than the total number of particles.
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(iii) The original meaning of the integral as the total number of

particles is not valid any more.

Instead, we can interpret the decrease of the integral with

temperature as particles going into the ground state.

The reason is that g(ε) in the integral is zero at the ground

state: The integral has not included the ground state in the

first place.

The integral works at high temperature when the particles in

the ground state are negligible. When a lot of particles go into

the ground state at very low temperature, the integral is not

accurate anymore.
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Example 4

(i) Write down the expression for the number of excited bosons

at temperature below condenstion.

(ii) Integrate this expression using the formula at the end of

“Photon and phonons” lecture notes.

(iii) Derive the formula for the condensation temperature.
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Solutions

(i) The number of excited bosons below condenstion

temperature is

Nex =
∫ ∞

0

g(ε)dε

exp(ε/kBT )− 1
=

4mπV

h3
(2m)1/2

∫ ∞
0

ε1/2dε

exp(ε/kBT )− 1
.

(ii) The formula to use is∫ ∞
0

x1/2

ex − 1
dx = 2.315

Comparing the denominator of the integrand, we make the

substitution:

x =
ε

kBT
.

Rearranging,

ε = kBTx.
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Since x is proportional to T the limits of 0 and ∞ stay the

same.

Substituting into the integral:

Nex =
4mπV

h3
(2m)1/2

∫ ∞
0

(kBTx)1/2

exp(x)− 1
× kBTdx.

Regrouping,

Nex =
(

2πmkBT

h2

)3/2
V ×

2
√
π

∫ ∞
0

x1/2

ex − 1
dx.

Applying the formula,∫ ∞
0

x1/2

ex − 1
dx = 2.315

we get

Nex =
(

2πmkBT

h2

)3/2
2.612V
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(iii) Condensation temperature TBE is when the integral just

starts to fall below N , the total number of particles.

So we can find this temperature by setting Nex to N :

N =
(

2πmkBTBE
h2

)3/2
2.612V.

Solving for TBE, we get

TBE =
h2

2πmkB

(
N

2.612V

)2/3
.
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