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Learning Aims: You will learn to

Describe the behaviours a superconductor: zero resistance,

Meissner’s effect, and heat capacity. Explain the significance of

the heat capacity behaviour.

Discuss why Faraday’s law of electromagnetic induction cannot

explain Meissner’s effect. Explain Meissner’s effect using a

macroscopic wavefunction.

Explain the cause of London penetration depth. Derive a

formula for it.

Explain the significance of the isotope effect. Suggest how

electrons can attract each other.

Describe the effect of electron movement on positive ions in

metal. Explain how the motion of the ions are related to Debye

frequency.
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Learning Aims: You will learn to

Describe how electron movement leaves behind a trail of

displaced ions and explain how to calculate the length of this

trail. Suggest how this relates to the size of the Cooper pair.

Explain how the idea of superfluid is applied to the Cooper pair.
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Resistance, magnetic field and heat capacity observations
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Zero resistance.

Metals conduct electricity. Normally, there is always some
resistance, however small. In some materials, this resistance
suddenly falls to zero below a certain temperature. In 1911,
Kamerlingh Onnes discovered that this happened with mercury
below 4.2 K

Here is an example of superconducting transition in
Niobium-Titanium wire, observed in 2010 by two high school
students at Daresbury Laboratory.
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Examples of superconductors.

These are examples of metals that become superconducting at
very low temperatures. The transition temperatures are close
to liquid helium temperature.

Another class of superconductors, called high temperature
superconductors, are ceramic. These can become
superconducting at temperatures higher than liquid nitrogen
temperature.
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Meissner effect.

When the resistance drops to zero, the superconductor all

expels all magnetic field from its body.

http://www.materia.coppe.ufrj.br/sarra/artigos/artigo10114/index.html

The field inside the body of a superconductor can be obtained

by inserting it in a coil and measuring the induced voltage.

6



Measuring magnetic field.

This graph shows the magnetisation of lead in liquid helium,
plotted against the applied field.

Livingston, Physical Review, vol. 129 (1963), p. 1943

Below a certain critical field, the magnetisation is equal and
opposite to the applied field. So the applied field in the
conductor is cancelled. Measurement of magnetisation is how
we know that the resultant field inside the superconductor is
zero.
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Levitation.

The expulsion of magnetic field from a superconductor is called

is Meissner effect. A popular demonstration is the levitation of

a superconductor above a magnet.

Note that this results from the opposing magnetisation. You

can get levitation by putting a north pole of a magnet on top

of the north pole of another magnet. So levitation does not

just happen to superconductors only.
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Heat capacity.

Recall the heat capacity of a normal metal:

Cv = γT +AT3.

Measurements show that for superconductors, this changes

completely below the transition temperature. This graph is the

result of measurement for the niobium metal.

Brown, et al, Physical Review, vol. 92 (1953), p. 52
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Niobium become superconducting below 9.5 K. It is possible to

prevent it from becoming superconducting by applying a

sufficiently large enough magnetic field.

We know from the Meissner effect that a niobium expels all

magnetic field. However, if the field is strong enough, it can

“force” its way into the superconductor. This destroys the

superconductivity and returns the niobium to a normal

conducting state - even if temperature is below 9.5 K.

Using this property, it is possible to select between the normal

and the superconducting state.
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If we select the normal conducting state of niobium by applying

a strong magnetic field, we would measure the curve labelled

“normal.”

This follows the “normal” behaviour of

Cv = γT +AT3.
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If we do not apply any magnetic field, we get the
superconducting state. Then we would get the curve labelled
“superconducting”.

If we subtract the phonon contribution of AT3, we would find
that the curve is closer to the exponential form:

C = a exp(−b/T )

for some constants a and b. This looks like the Boltzmann
distribution.
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Explanation using macroscopic wavefunction
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The Macroscopic Wavefunction.

In 1937, Fritz London suggested that if the electrons in a

superconductor somehow forms a macroscopic wavefunction.

Using this assumption, London was able to explain it expels all

magnetic field. To understand this, we first need to appreciate

why expulsion of the magnetic field is strange.

Suppose the resistance going to zero is the only change in a

metal. Consider what happens if we now bring a magnetic to

the metal.

The change in magnetic flux through the metal induces an

electric current, according to Faraday’s law.
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Lenz’s law.

According to Lenz’s law, the current would flow in such a way

as to produce a magnetic field of its own that opposes the

incoming field.

In a metal with resistance, this induced current would quickly

slow down to zero. The induced field becomes zero, and only

the incoming field remains in the body of the metal.

If the metal has no resistance, the induced current continues to

flow. The induced flux has to be opposite to the incoming flux.

Therefore they cancel, and the field in the body becomes zero.

In this way, the field is “expelled.”
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It looks like we have just “explained” the Meissner effect.

However, let us now look at what happens if the magnet is

already there before cooling.

We start with a normal metal with a magnetic field going

through the body. Then we cool this down and the resistance

falls to zero.

According to Faraday’s law, since there is no change in

magnetic flux, no current is induced. So the original field from

the magnet remains in the body.

In a real superconductor, we know from the Meissner effect

that, even in this case, the magnetic field must be expelled.

This shows that there is something different about a

superconductor that the familiar laws of electromagnetism

cannot explain.
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Macroscopic wavefunction.

We shall now see how a macroscopic wavefunction, ψ, can

explain the Meissner effect.

Recall the operator in quantum mechanics for momentum:

−i~
dψ

dx
= pxψ

where p is the momentum mv.

In the presence of an electromagnetic field, this is changed to

−i~
dψ

dx
= (mv + qA)ψ

where A is the vector potential and q the charge of the particle.

Both equations are quantum mechanical postulates that have

been shown to give correct results in physics.
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Vector potential

In order to use the vector potential, lets review its meaning. It

is defined by

∇×A = B,

where B is the magnetic field.

(The corresponding relation between the electric field and

electric potential is −∇φ = E.)

Applying Stoke’s theorem and integrating around any loop C:∫
C
A.dl =

∫
S
B.dS,

where S is any surface enclosed by the loop.

The right hand side is the magnetic flux, Φ.
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Phase.

Let us now return to the quantum mechanical equation:

−i~
dψ

dx
= (mv + qA)ψ.

Recall the wavefunction we used for superfluids:

ψ = e−iφ(x)

where φ(x) is the phase. Substituting into the equation, we get

~
dφ

dx
= mv + qA.

This relation along a straight line in x can be extended in a

simple way to any path or loop in 3D.

Consider a loop in a superconductor of length L enclosing an

area S. Integrating along this loop, we get

~∆φ = m
∫
L
v.dl + q

∫
L
A.dl.
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~∆φ = m
∫
L
v.dl + q

∫
L
A.dl.

The phase change ∆φ is zero or a multiple of 2π, because the

wavefunction returns to the same value after one loop.

The integral over A gives the magnetic flux Φ.

The velocity v is related to the current density J by

J = ρqv,

where ρ is the number density of the electrons. The above

equation then becomes

~∆φ =
m

ρq

∫
L
J.dl + qΦ.
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Let us now see how this equation

~∆φ =
m

ρq

∫
L
J.dl + qΦ.

can help us understand Meissner’s effect.

For a simple lump of metal, the wavefunction would be

continuous through the whole volume, so the phase change

would be zero. The equation then simplifies to

m

ρq

∫
L
J.dl = −qΦ.

This means that:

if there is a magnetic field in the macroscopic

wavefunction, then is a there is an electric current.

To see why this is special, consider Faraday’s law again.
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Meissner effect.

According to Faraday’s law, a change in magnetic flux is

required before a current can be induced.

For a macroscopic wavefunction, the very presence of the flux

produces the current. No change in flux is needed!

Let us look at the case of transition to the superconducting

state again. Previously, we have not been able to explain the

expulsion of the field using Faraday’s law.

We can now explain this assuming that a macroscopic

wavefunction appears when the metal becomes

superconducting, If there is a magnetic field in the metal, it

would produce a current. This current would in turn produce a

flux.

A more detailed reasoning would show that this wavefunction

flux is in the opposite direction to the incoming flux.
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London penetration depth
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London’s penetration depth.

Flux from the wavefunction, or superconducting, current would

cancel some of the incoming flux.

The amount cancelled depends on the density of the electrons

in the wavefunction. The higher the density, the larger the

superconducting current, and more of the incoming flux would

be cancelled.

For a uniform external field, this superconducting current would

typically be circulating the metal. So it produces the greatest

field at the centre, where more cancellation takes place.

For larger electron density, the region of cancellation is also

larger. In a typical superconductor, there is sufficent density to

expel the incoming field from most of the volume.

In practice, some field would penetrate to a depth of about 100

nm on the surface.
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The reason for the penetration depth is that a current is

needed to keep the field expelled.

Recall that a field must be present in the macroscopic

wavefunction in order to produce the current. As the field gets

expelled from the center of the superconductor, the current at

the center would also stop.

If the field is completely expelled from the metal, there would

be no current at all in the metal. Then there would be no

opposing flux to cancel the incoming flux. The external flux

would come in again and start producing current.

For this reason, a balance would to be reached. The field

would penetrate until a depth when there is sufficient current

to keep the rest of the volume field free.
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London penetration depth

Assuming that electrons form a macroscopic wavefunction,
Fritz London showed that the magnetic flux Φ in a
superconductor is related to the current density J by:

m

qρ

∫
J.dl = qΦ

where m is the mass of the electron, q the charge, and ρ the
number density of the electrons. The integral is taken over any
closed path, and Φ is the flux enclosed.

Consider a long cylinder with magnetic flux parallel to its axis.
Suppose that the current present in a layer at the surface is
just enough to cancel the external flux inside.
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Compared to the surface, the centre of the cylinder is enclosed

by more circulating current, which produces the opposing field.

So more of the external field would be cancelled, giving a

smaller resultant field at the centre.

A graph of the field B versus distance from the surface would

look like an exponentially falling curve. The average width of

the curve, λ is called the London penetration depth.
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Integrating the current along a circumference C, and assuming

a uniform current J in the layer, we find

m

qρ
JC = qB(Cλ).

J is unknown. In order to find the thickness λ, notice that the

current flows like a solenoid, which has the formula

B =
µ0NI

L
.
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NI corresponds to the total current. The cross-sectional area

of this current in the layer is Lλ. So the current density is

J =
current

area
=
NI

Lλ
.
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Combining with the solenoid formula, we get

B =
µ0NI

L
×
λ

λ
= µ0Jλ.

Since the field inside the superconductor is zero, this field

produced by the current must be equal and opposite the the

external field. Substituting into the previous expression:

m

qρ
JC = qB(Cλ).

and rearranging, we find

λ2 =
m

µ0q2ρ
.

λ is called the London penetration depth. It can be measured

by the change in reflection it causes to microwaves falling on

the surface. E.g. measurements on Niobium gives an estimate

of 340 Å.
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Isotope Effect and Cooper Pairs
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The Isotope Effect.

If electrons repel each other, how can they form a pair?

The clue: In 1950, the superconducting temperature of

Mercury was found to be different for different isotopes of

Mercury.

Reynolds, et al, Physical Review, vol. 78 (1950) p. 487

The only difference between isotopes is the number of neutrons

in the nuclei. This should not affect the conduction electrons!
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Lattice Vibration.

Why do the neutrons change the superconducting temperature?

One possible reason is that the movement of the atoms are

somehow involved in causing the superconductivity.

More neutrons means more mass. This would result in slower

movement of atoms.

This provides an important clue: Lattice vibration is known to

scatter electrons and cause resistance.
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How electrons “attract”

When a electron moves in a metal, it can attract the positive

ions and bring them closer.

Another electron may then get attracted to the displaced ions.

http://hyperphysics.phy-astr.gsu.edu/hbase/solids/coop.html
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The attractive potential between electrons is much smaller

than the kinetic energy of the two electrons. So it should not

normally be able to bind the electrons together.

However, in this case, the two electrons are not in free space.

They are in a Fermi sea - electrons stacked up to the Fermi

energy.

In the 1950s, Leon Cooper showed that two electrons near the

Fermi energy is is able to form a bound pair.

Bardeen, Cooper and Schrieffer (BCS) then developed a

complete theory to that is able to explain the Meissner’s effect,

the zero resistance, the heat capacity behaviour, and other

phenomena of superconductors.
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Energy gap.

As an example of a prediction by the BCS theory, recall the

behaviour of heat capacity in a superconductor,

C = a exp(−b/T ).

This can be written in the form:

Cv = D exp

(
−

∆

kBT

)
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Energy gap.

Cv = D exp

(
−

∆

kBT

)
This looks like the Boltzmann factor, in which ∆ is the energy

between two levels. In the BCS theory, ∆ is the energy needed

to excite one electron from the BCS condensate.

This energy is now called the energy gap. It can be obtained

directly from a heat capacity measurement by fitting the above

formula.

BCS theory predicts that the energy gap and the transition

temperature are related by:

2∆ = 3.52kBTc.
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Rearranging the relation gives this ratio:

2∆

kBTc
= 3.52.

The ratio for measured values are shown here:

Meservey and Schwarz, in Parks (1969) Superconductivity

The ratios are all fairly close to 3.52. This is one of many

evidencethat supports the BCS theory.

38



More on Cooper pairs
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Cooper pair

When an electron passes a positive ion, the ion experiences a

force from the electron for a short time.

This impulse cause the ion to move and oscillate at the Debye

frequency.
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Cooper pair

The average charge in a lattice is zero. The potential energy of
an electron is due to an ion is

U = −
e2

4πε0r
.

If the ion is displaced by an electron’s attraction, the net
potential is approximately the change in the ion’s potential:

δU ≈
dU

dr
δr ≈ −

e2

4πε0r2
δ.

This net potential is only present near the ion. Further away, it
will not be felt because other electrons would move around and
cancel it (screening). So another electron would feel this
potential only when r is about d, the distance between ions.
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Let the displacement of the ion be δ. The new potential is

V = δU ≈ −
e2

4πε0d2
δ.

To estimate this, we need to find δ. For small displacement δ

of the ion, the ion’s motion is simple harmonic. We know then

that: maximum velocity = amplitude x frequency. So when the

ion receives a sudden attraction (impulse) from a passing

electron, it takes off from rest with the velocity :

v0 ≈ δ × ωD.

To see that the Debye frequency ωD is the correct frequency

here, recall that ωD is the maximum frequency in lattice

vibration.
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When a lattice vibrates the maximum frequency, the adjacent

ions move in opposite phase, just as in the present case of two

ions attracted by an electron passing in between.

To find v0, we need to know the impulse (force x time) from

the electron. The force is active only when the distance is

within a distance of about d from the ion.

So the force and time, are respectively,

F ≈
e2

4πε0d2
and τ ≈

d

ve
,

where ve is the velocity of the electron.
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If the electron is at the Fermi level EF , the velocity can be
obtained from:

EF =
1

2
mv2

e .

Then the ion’s velocity is

v0 =
Fτ

M
where M is the mass of the ion.

The attraction only exists in the narrow region between
adjacent ions, and behind the passing electron. Also, it would
only last until the displaced ion returns to its rest position. The
time for this is the half of the period 2π/ωD. So a passing
electron with velocity ve leaves behind a trail of displaced ions
of length

l = ve ×
π

ωD
.
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This is also the length, or extent, of the attractive region. This

attraction can only be felt by another electron travelling along

nearly the same path, in the opposite direction. If they travel in

the same direction, the electron in front would not feel the

attraction from the electron behind.

From the qualitative picture above of the displacements, we

may sketch the potential well as follows.

where δU and l can be calculated from their formulae in earlier

slides.
45



In order to know whether this attraction could lead to a bound

state, we must solve the Schrodinger’s equation to see if the

wavefunction has a finite size (as opposed to a sine wave that

goes on forever). Without going into the detailed solution, lets

try and guess the shape of this wavefunction.

The attaction is very nearly along the line joining the two

electrons, just like the Coulomb force. So the potential is

effectively spherically symmetric. As the electrons are in

oppostive directions (and the paths very close), we may assume

that the angular momentum is zero.
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The ground state wavefunction of the hydrogen atom also has

spherical potential and zero angular momentum. So the

wavefunction would be spherical. However, it would also have

many oscillation, with the electrons have the large kinetic

energy of EF . The attractive potential is much weaker, and not

normally enough to bind the electrons.

When Leon Cooper solved the Schrodinger’s equation in 1956,

he used a sum of sine waves for the wavefunction, with

wavevectors k above the Fermi level. He showed that this can

solve the equation. The solution is indeed a wavefunction with

a finite size of about 300d, 300 times the spacing between ions.
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Cooper pair in real space

300 times the spacing between ions is close to the the length

of the trail of displaced ions.

Using this formula

l = ve ×
π

ωD

and the formula for Debye frequency ωD, the length of the trail

can be calculated.

The length of this trail is also the maximum range of the

attraction between the two electrons, so it is reasonable that

this length is close to the size of the Cooper pair.
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Cooper pair in real space

The wavefunction of an electron in a Cooper pair in real space
is not unlike that of an electron around an atom.

Kadin, Spatial Structure of the Cooper Pair (2005)

There are many nodes because of the high kinetic energy, EF
(higher energy means shorter wavelength).

The size of the Cooper pair is a few hundred times the spacing
between atoms, so there is a lot of overlap between Cooper
pairs.
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BCS superfluid.

The most obvious property about a superconductor is the zero

resistance. Unfortunately, there does not appear to be a simple

way to explain this.

Cooper pairs can carry electric current, but why does it not get

scattered by phonons and experience resistance?

Victor Weisskopf suggested that the Cooper pairs are packed

like atoms in the helium-4 superfluid, and has zero resistance

for similar reasons - rotons, excitations and Landau critical

velocity.

http://cdsweb.cern.ch/record/880131/files/p1.pdf

The Cooper pairs would flow like a superfluid, unless there is

enough energy to break them. This would happen at the

transition temperature, Tc.
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∆ is the energy gap obtained by fitting Boltzmann distribution

Cv = D exp

(
−

∆

kBT

)
to the heat capacity:

If we take ∆ as the energy needed to break the Cooper pair,
then we would expect that it is close to kBTc, because the
Cooper pairs should start disappearing around Tc. This is
consistent with measurements, which give kBTc ≈∆.

51



Two electrons at Fermi level have energy EF each. If they form

a Cooper pair, they give out energy ∆. So energy of the

Cooper pair is 2EF −∆. The binding energy ∆ is about

10−4EF . If ∆ is so much smaller, why do the electrons not

come apart?

Physically, if a electron just leaves the Cooper pair, its

wavefunction must change to that of a free particle, i.e. a sine

function, with energy EF −∆/2. However, this is just below

EF , where the states are fully occupied. This is not allowed by

the exclusion principle.
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BCS versus BEC

The electrons in the pair have opposite spin, so that resultant

spin of the Cooper pair is zero - it is a boson.

So, like the Bose-Einstein condensate, the Cooper pairs can

condense into the ground state and form a condensate.

Ketterle and Zwierlein, Making, probing and understanding ultracold Fermi gases (2006)

However, because of the considerable overlap, the interaction is

far more complex. It is normally called a BCS condensate

instead.
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Learning Outcome: You should be able to

Describe the behaviours a superconductor: zero resistance,

Meissner’s effect, and heat capacity. Explain the significance of

the heat capacity behaviour.

Discuss why Faraday’s law of electromagnetic induction cannot

explain Meissner’s effect. Explain Meissner’s effect using a

macroscopic wavefunction.

Explain the cause of London penetration depth. Derive a

formula for it.

Explain the significance of the isotope effect. Suggest how

electrons can attract each other.

Describe the effect of electron movement on positive ions in

metal. Explain how the motion of the ions are related to Debye

frequency.
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Learning Outcome: You should be able to

Describe how electron movement leaves behind a trail of

displaced ions and explain how to calculate the length of this

trail. Suggest how this relates to the size of the Cooper pair.

Explain how the idea of superfluid is applied to the Cooper pair.

55



Worked Examples
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Example 1

A 20 cm long aluminium cylinder has a radius of 2 cm. It is in

a 0.001 T magnetic field that is parallel to its axis. The

cylinder is superconducting, and the field penetrates 200 Å into

the surface of the cylinder.

(i) Sketch the cross section of the cylinder. Indicate the area

where the field has penetrated. Label the radius and the

penetration depth.

(ii) Estimate this area.

(iii) Estimate the flux in the cylinder.
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Solution

(i)

(ii) We can think of this as a long narrow strip with width 200
Å and length equal to circumference of the cross-section.

Then area = length x width = 2π×(2 cm)×200Å
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= 2π×(0.02 m)×200× 10−10 = 2.513× 10−9 m2.

(iii) Flux = field x area = 0.001 T ×2.513× 10−9 m2

= 2.513× 10−12 T m2.
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Example 2

(i) With the help of a sketch, explain how the current

circulating the cylinder in Example 1 is similar to a solenoid.

(ii) Write down the formula for the magnetic field in a solenoid,

explaining the symbols used. What is meant by the total

current circulating the solenoid and what is the formula?

(iii) The current circulating the cylinder exactly cancels the

external field inside the cylinder. Use the solenoid formula to

find the total current circulating the cylinder.
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Solution

(i)

The current circulates the cylinder in a thin layer on the curved
surface. It has the same effect as current carrying wires wound
round the cylinder into a solenoid.

Because of this, the solenoid formula can also be used to relate
the current on the cylindrical surface to the field inside the
cylinder that this current produces.
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(ii) Formula for the magnetic field in a solenoid is

B =
µ0NI

L
,

where L is the length of the solenoid, N is the number of turns
and I is the current.

Total current is the sum of currents in all the turns. It is equal
to NI.

(iii) Rearrange the solenoid formula to give the total current:

NI =
BL

µ0
.

The external field in Example 1 is 0.001 T. If the current
exactly cancels this, then it must produce an opposing field of
0.001 T.

So B = 0.001 T. Therefore

NI =
BL

µ0
= 159.2 A.
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Example 3

This question follows from Examples 1 and 2.

(i) The current circulates in a thin layer near the surface of the

cylinder. Indicate a sketch of the cylinder a cross-section of this

thin layer. Label the length and width of this cross-section.

(ii) Find the cross-sectional area of the current sheet on the

cylinder in Example 1.

(iii) Find the current density in Example 1.
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Solutions

(i)

(ii) The cross sectional area of the current sheet has a length
of 20 cm and width of 200 Å.

So the area = 20 cm ×200Å = 0.2 m ×200× 10−10 m =
4× 10−9 m2.
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(iii) current density = current / area

= 159.2 A / (4× 10−9 m2) = 3.979× 1010 A m−2
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Example 4

A piece of aluminium is at a temperature where it is a

superconductor. When an electron travels through its lattice of

positive ions, the electron leaves behind a trail of displaced ions.

(i) Write down the formula to estimate the natural frequency

of the displaced ions, explaining the symbols used.

(ii) Estimate the natural frequency of the displaced ions.

(Molar volume of aluminium is 10 cm −3.. Speed of sound in

aluminium is 6420 m/s.)

(iii) Estimate the time that a displaced ion takes to return to

its rest position.
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Solution

A piece of aluminium is at a temperature where it is a

superconductor. When an electron travels through its lattice of

positive ions, the electron leaves behind a trail of displaced ions.

(i) Formula to estimate the natural frequency of the displaced

ions is Debye frequency:

ωD =

(
6Nπ2v3

V

)1/3

where N is the number of atoms, v is the speed of sound in the

solid, and V is the volume of the solid.

(ii)

V = 10 cm3 = 10×10−6 m3
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v = 6420 m/s

N = NA

Substituting:

ωD =

(
6Nπ2v3

V

)1/3

= 9.807× 1013 rad/s.

(iii) Estimate the time that a displaced ion takes to return to

its rest position. It takes half a period:

τ =
π

ωD
= 3.203× 10−14 s.
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Example 5

Following from Example 4:

(i) Write down the formula for Fermi energy. Calculate this

energy. (Aluminium gives one conduction electron per atom.)

(ii) Calculate the velocity of an electron at Fermi level.

(iii) Estimate the length of the trail of displaced ions. Explain

what this suggests about the size of the Cooper pair in

aluminium.
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Solutions

(i) Formula for Fermi energy is

EF =
~2

2m

(
3π2N

V

)2/3

.

N = NA

V = 10 cm3 = 10×10−6 m3

m = me

Subtituting:

EF = 8.896× 10−19 J.

(ii) At Fermi level, kinetic energy of electron = Fermi energy.
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1

2
mev

2 = EF .

Velocity

ve =

√
2EF
me

substituting, we get

ve = 1.398× 106 m/s.

(iii)

length of the trail = distance electron travelled before a

displaced ion return to rest position

So the length is

l = veτ = 1.398× 106 m/s× 3.203× 10−14 s = 4.477× 10−8 m
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This is the range of attraction between electrons in the Cooper

pair. This suggests that the size of the Cooper pair is also

about 4.477× 10−8 m.
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