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Objectives

We shall

• derive Lorentz transformation,

• derive E = mc2,

• derive length contraction / time dilation,

• derive four-vectors,

• derive relativistic Hamiltonian, and

• work out a collider problem.
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Galilean Transformation

x′ = x− vt
t′ = t

- a linear transformation between (x, t) and (x′, t′).

Frame of reference essentially means viewpoint of observer.
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Speed of light

Galilean transformation means that speed of light can change
in another frame.

The Michelson-Morley experiment look for changes in
intereference fringes as an interferometer was rotated.

http://sciencesummit.wordpress.com/2011/05/28/michelson%E2%80%93morley-experiment/

It would be sensitive to changes in light speed in different
directions as Earth travels through space.

The null result suggests that speed of light might be same in
different frames.
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Postulate

Postulate: Speed of light is same in all frames of reference.

This means that Galilean transformation must be wrong.

Need to find new one. Hope that it linear. Let

x′ = γx+ bt (1)

t′ = Ax+Bt (2)

Lets follow the origin of R’, x′ = 0.

To an observer in R, it is at some (x, t) and x = vt.

Substitute this into equation 1.

This gives

0 = γvt+ bt

and b = −γv.
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Lorentz transformation

Substitute this into equation 1 gives

x′ = γ(x− vt) (3)

To an observer in R’, velocity of R is -v. So

x = γ(x′+ vt′) (4)

Since speed of light is the same in R and R’, t = x/c and
t′ = x′/c.

Substituting into equations 3 and 4 gives

x′ = γ(1− v/c)x
x = γ(1 + v/c)x′

Multiplying:

xx′ = γ2(1− v2/c2)xx′ (5)
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Lorentz Transformation

Solving gives the Lorentz factor:

γ =
1√

1− v2

c2

Notice that this must be more than or equal to 1.

Substitute the light speed relations x′ = ct′ and t = x/c into

equation 3 [x′ = γ(x− vt)] gives

t′ = γ(t− vx/c2) (6)

This completes the Lorentz transformation:

t′ = γ(t− vx/c2) (7)

x′ = γ(x− vt) (8)

y′ = y (9)

z′ = z (10)
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Length Contraction

Suppose a ruler of length L′ is at rest in frame R’. R’ moves
with velocity v relative to frame R. What is the length of the
moving ruler when measure by an observer who is at rest in R?

Consider positions in R’ of two ends of ruler. Relate to their
positions in R: x′A = γ(xA − vt)

x′B = γ(xB − vt)
Subtracting:

L′ = γ(xB − xA)

So in R, the length = xB − xA = L′/γ is shorter because γ > 1.
So the length has contracted.
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Time Dilation

A clock is at rest in frame R’. Two points on the clock are

marked A and B. The clock measures the time taken for the

minute hand to move from A to B. An observer at rest in

frame R uses their own clock to measure this time.

Relate the times in R’ to the times in R using Lorentz

transformation:

tA = γ(t′A + vx′/c2)

tB = γ(t′B + vx′/c2)

Subtracting, tB − tA = γ(t′B − t
′
A). So duration in R’ is shorter

since γ > 1. Hence the time is dilated.
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Relativistic Dynamics

Under Lorentz transformation, momentum is not conserved.

To see this, consider two balls with speeds in equal and

opposite directions.

Suppose that they bounce off each other at angle. Choose as x

axis the line of symmetry of their paths:
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Colliding Balls

Choose as frame R one in which A moves up and bounces

down vertically.

Choose as frame R’ one in which B moves down and bounces

up vertically.
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Momentum Not Conserved

Because of time dilation, an observer at rest in R sees that the

vertical velocity of ball B slows down to v0/γ. The vertical

momenta are:

Collision A B Total
before +mv0 −mv0/γ +mv0(1− 1/γ)
after −mv0 +mv0/γ −mv0(1− 1/γ)

Total momenta before and after collision are not equal.

So momentum is not conserved!
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Rescuing Momentum Conservation

If mass m increases to γm, the magnitudes of the vertical

momenta become equal:

Collision A B Total
before +mv0 −γmv0/γ 0
after −mv0 +γmv0/γ 0

Total momenta before and after collision are equal.

So momentum is now conserved.
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Faster Than Light?

So to conserve momentum, mass must increase with velocity as

γm =
m√

1− v2

c2

However, as v approaches c, γm approaches infinity.

This suggests that no object with mass can travel faster than

the speed of light.
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Relativistic Kinetic Energy

Work done W by a force F on an object in free space is equal

gain in kinetic energy EK.

Newton’s 2nd law, taking into account mass increase:

F =
dp

dt
=
dγmv

dt

The object starts from rest. So kinetic energy is

Ek = W =
∫
Fdx =

∫
F
dx

dt
dt =

∫
dp

dt
vdt =

∫
vdp

Integrating by parts,
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Relativistic Kinetic Energy

Ek =
∫
vdp

= v′p
∣∣∣∣v
0
−
∫ v

0
pdv′

= γmv2 −
∫ v

0
γmv′dv′

= γmv2 −
∫ v

0

mv′√
1− v′2

c2

dv′

= γmv2 +mc2

√
1−

v2

c2
−mc2
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Mass-Energy Equivalent (or E = mc2)

Simplifying:

Ek = γmc2 −mc2

Since we assumed that γm is mass increase, maybe it is

because the kinetic energy has mass.

By extension, maybe the mass of the body at rest can be

converted to energy?

If so, we would expect that the resulting energy is

E = mc2

because this part was subtracted off in the energy gain

equation above.

Lots of maybe’s when Einstein derived this, but since then

confirmed by atomic bomb and nuclear energy.
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To Derive Four-Vectors

Rewrite Lorentz transformation in matrix form:
ct′1
x′1
y′1
z′1

 =


γ −βγ 0 0
−βγ γ 0 0

0 0 1 0
0 0 0 1



ct1
x1
y1
z1


where β = v/c.

Just for fun, take the transpose:

(
ct′2 x′2 y′2 z′2

)
=
(
ct2 x2 y2 z2

)
γ −βγ 0 0
−βγ γ 0 0

0 0 1 0
0 0 0 1


I have changed the subscripts from 1 to 2. That is ok because

the transformation applies to any coordinate value.
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Making Four-Vectors

While we are having fun, lets also reverse the signs of ct. It

turns out that the equation is still correct if we also reverse the

signs of −βγ:

(
−ct′2 x′2 y′2 z′2

)
=
(
−ct2 x2 y2 z2

)
γ +βγ 0 0

+βγ γ 0 0
0 0 1 0
0 0 0 1


You can check that if you expand this, you will still get the

correct Lorentz transformation equations.

Changing the signs of −βγ gives the inverse matrix, since

reversing velocity means reversing the transform.

See what happens if we now multiply this by the first equation

on the last slide.
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Inner Product

(
−ct′2 x′2 y′2 z′2

)
ct′1
x′1
y′1
z′1

 =

(
−ct2 x2 y2 z2

)
γ +βγ 0 0

+βγ γ 0 0
0 0 1 0
0 0 0 1




γ −βγ 0 0
−βγ γ 0 0

0 0 1 0
0 0 0 1



ct1
x1
y1
z1



Since one matrix is inverse of the other, they cancel:

(
−ct′2 x′2 y′2 z′2

)
ct′1
x′1
y′1
z′1

 =
(
−ct2 x2 y2 z2

)
ct1
x1
y1
z1



Each side is called an inner product.
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Inner Products are Invariant

(
−ct′2 x′2 y′2 z′2

)
ct′1
x′1
y′1
z′1

 =
(
−ct2 x2 y2 z2

)
ct1
x1
y1
z1



On the right is the inner product of two vectors in one frame.

On the left is the inner product after these vectors are Lorentz

transformed to another frame.

The equation shows that inner products remain the same after

any Lorentz transform. We say that inner products are

invariant.
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Four-vector

Any vector that transforms according to the Lorentz
transformation is called a four-vector. To understand this
better, lets make some more four-vectors.

We have seen one four-vector: 4-position X = (ct, x, y, z).

Differentiate this with respect to proper time τ to give
4-velocity:

V =
dX

dτ
=
(
c
dt

dτ
,
dx

dτ
,
dy

dτ
,
dz

dτ

)
Proper time is the time in the rest frame of the moving body.
So it does not depend on Lorentz transformation. If we
transform the above vector, we would just treat dτ as a
constant factor.

The rest of the vector is (cdt, dx, dy, dz). This follows the same
Lorentz transform as X since it is just the difference between
two different (ct, x, y, z).
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Four-vector

Therefore V obeys the Lorentz transformation and is a
four-vector.

To simplify, use familiar 3D notations

x = (x, y, z)

v =
(
dx

dt
,
dy

dt
,
dz

dt

)
These familiar vectors we call 3-vectors.

Also, time dilation means that proper time runs slower since
the body moves relative to other frames. So dt > dτ . So

dt

dτ
= γ

So

X = (ct,x)

V =
dX

dτ
= (cγ, γv)
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More Four-vectors

In this way, we can make new 4-vectors just by differentiating

those that we know:

4-velocity V =
dX

dτ
= γ(c,v)

4-momentum P = mV = m0γ(c,v) = (mc,p) =
(
E

c
,p
)

4-force F =
dP

dτ
= γ

dP

dt
= γ

(
c
dm

dt
,
dp

dt

)

So the inner product of any two of these 4-vectors is invariant

(with respect to Lorentz transformation of the 4-vectors).
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Three-vectors

By extension, we call the familiar 3D vectors 3-vectors:

3-velocity v = (vx, vy, vz)

3-momentum p = (px, py, pz)

3-force f =
dp

dt
= m0

dγv

dt

where the last one is the modified form of Newton’s second law.
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For Accelerator Calculations

These formulae are often used:

relative velocity β =
v

c

Lorentz factor γ =
1√

1− v2

c2

momentum p = mv = m0γβc

kinetic energy T = (m−m0)c2 = m0c
2(γ − 1)

total energy E2 = p2c2 +m2
0c

4

(11)
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The last one

E2 = p2c2 +m2
0c

4

is obtained using the invariance of 4-momentum P with itself.

P =
(
E

c
,p
)

So inner product with itself is −E2/c2 + p2.

In the rest frame of the body, P = (m0c
2/c,0). So the inner

product is m2
0c

2.

So −E2/c2 + p2 = m2
0c

2, leading to the total energy equation

above.
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Hamiltonian Mechanics

Classical mechanics generalises Newtonian mechanics into a
method for systems with many coordinates. This method is
called Hamiltonian mechanics. It is widely used in accelerator
physics for beam dynamics calculations.

1. Define a function H = T + V . T is kinetic energy, V is
potential energy so H is total energy. H is a function of
momentum pi and position qi, where i means different
coordinates.

2. The equation of motion is obtained using the Hamiltonian
equations:

dpi
dt

= −
∂H

∂qi

dqi
dt

=
∂H

∂pi
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Deriving Newtonian Mechanics

As example, consider a mass m on a spring k.

Kinetic energy T = p2

2m

Potential energy V = 1
2kx

2

So Hamiltonian H = T + V = p2

2m + 1
2kx

2

The coordinates are momentum p1 = p and position q1 = x.

dp

dt
= −

∂H

∂x
= −

∂V

∂x
= −kx

dx

dt
=
∂H

∂p
=

p

m

The first equation gives the spring equation f = −kx which can
be also be derived from Newton’s 2nd law.

The second one gives the familiar v = p/m.
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Relativistic Hamiltonian

An object of mass m0 moves in a potential field V (x).

Kinetic energy

T = γm0c
2 −m0c

2

So Hamiltonian

H = T + V = γm0c
2 −m0c

2 + V

Later, when we differentiate, the constant term m0c
2 will give

0. So we can leave it out:

H = γm0c
2 + V

We need H to be a function of p, so use this formula for

energy:

H =
√
p2c2 +m2

0c
4 + V
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Relativistic Hamiltonian

To check that this is correct, must use Hamilton’s equations to

see if we can get back Newton’s equations:

dp

dt
= −

∂H

∂x
= −

∂V

∂x

dx

dt
=
∂H

∂p
=

cp√
p2 +m2

0c
2

First equations is Newton’s 2nd law, since negative potential

gradient on right side is force.

2nd equation has v on left side. Can be rearranged to

p =
m0v√
1− v2

c2

= γm0v

So both Hamilton’s equations are correct.
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A Collider Problem

We want to collide a proton p1 with anti-proton p2 to produce

W particles W1 and W2. Mass of a W particle is M0 = 100m0,

where m0 is proton mass.

Two ways:

Experiment 1: p1 and p2 have equal and opposite velocities.

Experiment 2: p1 is at rest.

Compare the energies needed.
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Experiment 1

Resultant momentum is zero, so centre of mass (CoM) is at

rest - centre of mass frame.

4-momenta before collision:

Collision p1 p2
before (E/c,p) (E/c,−p)

Energy conservation means that E = EW . So EW must be

> M0c
2 to produce a W. So at least 2× 100m0c

2 is needed in

this experiment.
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Experiment 2

One proton is at rest. We call it the fixed target.

4-momenta before collision:

Collision p1 p2
before (m0c,0) (E′/c,p′)

33



Try Inner Product

Copy here the momenta before collision in the 2 frames:

Frames p1 p2 p1 + p2
fixed target (m0c,0) (E′/c,p′) (m0c+ E′/c,p′)

centre of mass (E/c,p) (E/c,−p) (2E/c,0)

Try inner product between p1 and p1 + p2. (This happens to

work ¨̂ ).

inner product in fixed target frame = inner product in centre of

mass frame

−m0c×
(
E′

c
+m0c

)
+ 0× p′ = −

E

c
×

2E

c
+ 0× p
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Comparing Experiments

Simplifying gives

E′+m0c
2 =

2E2

m0c2

From CoM case, we know that E > 100m0c
2. So

E′+m0c
2 =

2E2

m0c2
>

2(100m0c
2)2

m0c2

Rearranging gives

E′ > (20000− 1)m0c
2

So the fixed target Expt 2 needs about 200 times more energy

than the centre of mass Expt 1.
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In Conclusion

We have

• derived Lorentz transformation,

• derived E = mc2,

• derived length contraction / time dilation,

• derived four-vectors,

• derived relativistic Hamiltonian, and

• worked out a collider problem.
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